Do you want to publish a course? Click here

Chiral phase transition at finite temperature and conformal dynamics in large Nf QCD

119   0   0.0 ( 0 )
 Added by Kohtaroh Miura
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the chiral phase transition at finite temperature (T) in colour SU(Nc=3) Quantum Chromodynamics (QCD) with six species of fermions (Nf=6) in the fundamental representation by using lattice QCD with improved staggered fermions. By considering lattices with several temporal extensions Nt, we observe asymptotic scaling for Nt > 4. We then extract the dimensionless ratio Tc/Lambda_L (Lambda_L = Lattice Lambda-parameter) for Nf = 6 and Nf = 8, the latter relying on our earlier results. Further, we collect the critical couplings beta^c for the chiral phase transition at Nf = 0 (quenched), and Nf = 4 at a fixed Nt = 6. The results are consistent with enhanced fermionic screening at larger Nf. The Tc/Lambda_L depends very mildly on Nf in the Nf = 0 - 4 region, starts increasing at Nf = 6, and becomes significantly larger at Nf = 8, close to the edge of the conformal window. We discuss interpretations of these results as well as their possible interrelation with preconformal dynamics in the light of a functional renormalization group analysis.



rate research

Read More

We present a lattice QCD based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of $58~{rm MeV}lesssim m_pilesssim 163~{rm MeV}$. The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of $2.8$-$4.5$ times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cut-off, corresponding to lattices with temporal extent $N_tau=6, 8$ and $12$. After thermodynamic, continuum and chiral extrapolations we find the chiral phase transition temperature $T_c^0=132^{+3}_{-6}$ MeV.
We study the thermal phase transition in colour SU(3) Quantum Chromodynamics (QCD) with a variable number of fermions in the fundamental representation by using lattice Monte-Carlo simulations. We collect the (pseudo) critical couplings for N_f=(0, 4, 6,8), and we investigate the pre-conformal dynamics associated with the infra-red fixed point in terms of the N_f dependence of the transition temperature. We propose three independent estimates of the number of flavour N_f^* where the conformal phase would emerge, which give consistent results within the largish errors. We consider lines of fixed N_t in the space of (N_f, bare lattice coupling), and locate the vanishing of the step scaling function for N_f^*sim 11.1pm 1.6. We define a typical interaction strength (g_TC) at the scale of critical temperature T_c, and we find that g_TC meets the zero temperature critical couplings estimated by the two-loop Schwinger Dyson equation or the IRFP coupling in the four-loop beta-function at N_f^*sim 12.5pm 0.7. Further, we study the N_f dependences of T_c/M where M is a UV N_f independent reference scale determined by utilising the coupling at the scale of the lattice spacing. Then, T_c/M turns out to be a decreasing function of N_f, and the vanishing T_c/M indicates the emergence of the conformal window at N_f^* sim 10.4 pm 1.2.
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. We estimate these systematic effects to be about 10 MeV
136 - Owe Philipsen 2019
Neither the chiral limit nor finite baryon density can be simulated directly in lattice QCD, which severely limits our understanding of the QCD phase diagram. In this review I collect results for the phase structure in an extended parameter space of QCD, with varying numbers of flavours, quark masses, colours, lattice spacings, imaginary and isospin chemical potentials. Such studies help in understanding the underlying symmetries and degrees of freedom, and are beginning to provide a consistent picture constraining the possibilities for the physical phase diagram.
We investigate the phase structure of 3-flavor QCD in the presence of finite quark chemical potential $amu=0.1$ by using the Wilson-Clover fermion action. Especially, we focus on locating the critical end point that characterizes the phase structure. We do this by the kurtosis intersection method for the quark condensate. For Wilson-type fermions, the correspondence between bare parameters and physical parameters is indirect. Hence we present a strategy to transfer the bare parameter phase structure to the physical one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا