Magnetar Oscillations II: spectral method


Abstract in English

The seismological dynamics of magnetars is largely determined by a strong hydro-magnetic coupling between the solid crust and the fluid core. In this paper we set up a spectral computational framework in which the magnetars motion is decomposed into a series of basis functions which are associated with the crust and core vibrational eigenmodes. A general-relativistic formalism is presented for evaluation of the core Alfven modes in the magnetic-flux coordinates, as well for eigenmode computation of a strongly magnetized crust of finite thickness. By considering coupling of the crustal modes to the continuum of Alfven modes in the core, we construct a fully relativistic dynamical model of the magnetar which allows: i) Fast and long simulations without numerical dissipation. ii) Very fine sampling of the stellar structure. We find that the presence of strong magnetic field in the crust results in localizing of some high-frequency crustal elasto-magnetic modes with the radial number n>1 to the regions of the crust where the field is nearly horizontal. While the hydro-magnetic coupling of these localized modes to the Alfven continuum in the core is reduced, their energy is drained on a time-scale much less than 1 second. Therefore the puzzle of the observed QPOs with frequencies larger than 600 Hz still stands.

Download