Do you want to publish a course? Click here

Determination of the most pertinent EUV proxy for use in thermosphere modeling

97   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two major issues in the specification of the thermospheric density are the definition of proper solar inputs and the empirical modeling of thermosphere response to solar and to geomagnetic forcings. This specification is crucial for the tracking of low Earth orbiting satellites. Here we address both issues by using 14 years of daily density measurements made by the Stella satellite at 813 km altitude and by carrying out a multiscale statistical analysis of various solar inputs. First, we find that the spectrally integrated solar emission between 26-34 nm offers the best overall performance in the density reconstruction. Second, we introduce linear parametric transfer function models to describe the dynamic response of the density to the solar and geomagnetic forcings. These transfer function models lead to a major error reduction and in addition open new perspectives in the physical interpretation of the thermospheric dynamics.



rate research

Read More

Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control policies, but may be hindered by incomplete data in some regions of the world. Here we explore the opportunity of using proxy data or models for individual mobility to describe commuting movements and predict the diffusion of infectious disease. We consider three European countries and the corresponding commuting networks at different resolution scales obtained from official census surveys, from proxy data for human mobility extracted from mobile phone call records, and from the radiation model calibrated with census data. Metapopulation models defined on the three countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data well capture the empirical commuting patterns, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from both sources of data - mobile phones and census - are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, however preserving the order of infection of newly infected locations. Match in the epidemic invasion pattern is sensitive to initial conditions: the radiation model shows higher accuracy with respect to mobile phone data when the seed is central in the network, while the mobile phone proxy performs better for epidemics seeded in peripheral locations. Results suggest that different proxies can be used to approximate commuting patterns across different resolution scales in spatial epidemic simulations, in light of the desired accuracy in the epidemic outcome under study.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
Observations of the Suns surface suggest a nonuniform radiated flux as related to the presence of bright active regions and darker coronal holes. The variations of the FUV/EUV source radiation can be expected to affect the Lyman-alpha backscatter glow measured by spaceborne instruments. In particular, inferring the heliolatitudinal structure of the solar wind from helioglow variations in the sky can be quite challenging if the heliolatitudinal structure of the solar FUV/EUV radiation is not properly included in the modeling of the heliospheric glow. We present results of analysis of the heliolatitudinal structure of the solar Lyman-alpha radiation as inferred from comparison of SOHO/SWAN satellite observations of the helioglow intensity with modeling results obtained from the recently-developed WawHelioGlow model. We find that in addition to time-dependent heliolatitudinal anisotropy of the solar wind, also time-dependent heliolatitudinal variations of the intensity of the solar Lyman-alpha and photoionizing emissions must be taken into account to reproduce the observed helioglow modulation in the sky. We present a particular latitudinal and temporal dependence of the solar Lyman-alpha flux obtained as a result of our analysis. We analyze also differences between polar-equatorial anisotropies close to the solar surface and seen by an observer located far from the Sun. We discuss the implications of these findings for the interpretation of heliospheric-glow observations.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a field-of-view of 54x54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAPs point spread function (PSF) from the observations. In this paper we use the resulting images to conduct the first ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three-year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic field that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.
Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energetic ions. Aims. We aim to examine a source flare of impulsive (or 3He-rich) solar energetic particle events with EUV line spectroscopy. Methods. We inspect all (90+) reported 3He-rich flares of previous solar cycle 23 and find only four (recurrent) jets in the field of view of SOHO CDS. The jet with the most suitable spatial and temporal coverage is analyzed in detail. Results. Two enhanced (non-thermal) line broadenings are observed in the cooler chromospheric / transition-region lines and they are localized near the site where the closed magnetic loops reconnect with the open magnetic field lines. Both enhanced broadenings are found in the sites with redshifts in the lines, surrounded by the region with blueshifts. One enhanced line broadening is associated with a small flare without energetic particle signatures while another occurs just after the particle acceleration signatures of the main flare terminated. Conclusions. The observed excess broadening appears to be not directly related to the energetic ion production and motions. Further investigations where the critical impulsive phase of the flare is covered are required, ideally with high-resolution spectrometers intentionally pointed to the 3He-rich solar energetic particle source.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا