Do you want to publish a course? Click here

Time-Reversal Invariance Violation in Heavy and in Few-body Nuclei

133   0   0.0 ( 0 )
 Added by Vladimir Gudkov
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Time reversal invariance violating (TRIV) effects in neutron scattering are very important in a search for new physics, being complementary to neutron and atomic electric dipole moment measurements. In this relation, a sensitivity of TRIV observables to different models of CP-violation and their dependencies on nuclear structure, which can lead to new enhancement factors, are discussed.



rate research

Read More

Apart from the $pd$ reaction also the scattering of antiprotons with transversal polarization $p_y^p$ on deuterons with tensor polarization $P_{xz}$ provides a null-test signal for time-reversal-invariance violating but parity conserving effects. Assuming that the time-reversal-invariance violating $bar NN$ interaction contains the same operator structure as the $NN$ interaction, we discuss the energy dependence of the null-test signal in $bar pd$ scattering on the basis of a calculation within the spin-dependent Glauber theory at beam energies of 50-300 MeV.
Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed.
Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.
Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on hadronic wave functions, obtained by solving three-body Faddeev-Merkuriev equations in configuration space with realistic potentials.
We apply the large-$N_c$ expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-$N_c$ counting are constructed. For the TV and parity-violating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which however are suppressed by 1/$N_c$ compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral EFT potential in the TV parity-violating case, leads to large-$N_c$ scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا