No Arabic abstract
The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.
The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.
Performance of triple GEM prototypes in strong magnetic field has been evaluated bymeans of a muon beam at the H4 line of the SPS test area at CERN. Data have been reconstructedand analyzed offline with two reconstruction methods: the charge centroid and the micro-Time-Projection-Chamber exploiting the charge and the time measurement respectively. A combinationof the two reconstruction methods is capable to guarantee a spatial resolution better than 150{mu}min magnetic field up to a 1 T.
The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.