Do you want to publish a course? Click here

Weak lensing of CMB by cosmic (super-)strings

174   0   0.0 ( 0 )
 Added by Daisuke Yamauchi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effect of weak lensing by cosmic (super-)strings on the anisotropies of cosmic microwave background (CMB). In developing a method to calculate the lensing convergence field due to strings, and thereby temperature and polarization angular power spectra of CMB, we clarify how the nature of strings, characterized by the intercommuting probability, can influence these CMB anisotropies. Assuming that the power spectrum is dominated by Poisson-distributed string segments, we find that the convergence spectrum peaks at low multipoles and is mostly contributed from strings located at relatively low redshifts. As the intercommuting probability decreases, the spectra of the convergence and hence the lensed temperature and polarizations are gained because the number density of string segments becomes larger. An observationally important feature of the string-induced CMB polarizations is that the string-lensed spectra decay more slowly on small scales compared with primordial scalar perturbations from standard inflation.



rate research

Read More

We study diffusion damping of acoustic waves in the photon-baryon fluid due to cosmic strings, and calculate the induced $mu$- and $y$-type spectral distortions of the cosmic microwave background. For cosmic strings with tension within current bounds, their contribution to the spectral distortions is subdominant compared to the distortions from primordial density perturbations.
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy maps, and shows that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null signals for pure Gaussian maps converges to a $chi^2$ distribution, with detectability threshold corresponding to a string induced step signal with an amplitude of about 100 $muK$ which corresponds to a limit of roughly $Gmu < 1.5times 10^{-6}$. We study the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we derive sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment.
We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string tension parameter $Gmu$. For example, in the $Lambda$CDM model with the addition of strings and no primordial tensor perturbations, we find $Gmu < 2.0 times 10^{-7}$ at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. We investigate the source of the difference, showing that the main cause is an improved treatment of the string evolution across the radiation-matter transition. The increased computational volume also makes possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. This, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%, demonstrating that field theory simulations of cosmic strings have now reached the required dynamic range for CMB calculations.
We present a new analytical method to calculate the small angle CMB temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability $P$. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of $P$ has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the case of conventional cosmic strings is in very good agreement with the numerical result obtained by Fraisse et al.. Then we estimate the upper bound on the dimensionless tension of the string for various values of $P$ by assuming that the fraction of the CMB power spectrum due to cosmic (super-)strings is less than ten percents at various angular scales up to $ell=2000$. We find that the amplitude of the spectrum increases as the intercommuting probability. As a consequence, strings with smaller intercommuting probabilities are found to be more tightly constrained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا