Do you want to publish a course? Click here

The nature and consequences of clumping in hot, massive star winds

107   0   0.0 ( 0 )
 Added by Jon Sundqvist
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

This review describes the evidence for small-scale structure, `clumping, in the radiation line-driven winds of hot, massive stars. In particular, we focus on examining to what extent simulations of the strong instability inherent to line-driving can explain the multitude of observational evidence for wind clumping, as well as on how to properly account for extensive structures in density and velocity when interpreting the various wind diagnostics used to derive mass-loss rates.



rate research

Read More

We investigate the effects of stellar limb-darkening and photospheric perturbations for the onset of wind structure arising from the strong, intrinsic line-deshadowing instability (LDI) of a line-driven stellar wind. A linear perturbation analysis shows that including limb-darkening reduces the stabilizing effect of the diffuse radiation, leading to a net instability growth rate even at the wind base. Numerical radiation-hydrodynamics simulations of the non-linear evolution of this instability then show that, in comparison with previous models assuming a uniformly bright star without base perturbations, wind structure now develops much closer ($r la 1.1 R_star$) to the photosphere. This is in much better agreement with observations of O-type stars, which typically indicate the presence of strong clumping quite near the wind base.
Small-scale inhomogeneities, or `clumping, in the winds of hot, massive stars are conventionally included in spectral analyses by assuming optically thin clumps. To reconcile investigations of different diagnostics using this microclumping technique, very low mass-loss rates must be invoked for O stars. Recently it has been suggested that by using the microclumping approximation one may actually drastically underestimate the mass-loss rates. Here we demonstrate this, present a new, improved description of clumpy winds, and show how corresponding models, in a combined UV and optical analysis, can alleviate discrepancies between previously derived rates and those predicted by the line-driven wind theory. Furthermore, we show that the structures obtained in time-dependent, radiation-hydrodynamic simulations of the intrinsic line-driven instability of such winds, which are the basis to our current understanding of clumping, in their present-day form seem unable to provide a fully self-consistent, simultaneous fit to both UV and optical lines. The reasons for this are discussed.
We study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization. We determine the occurrence and properties of these convection zones as function of the stellar parameters. We then confront our results with observations of OB stars. A stellar evolution code is used to compute a grid of massive star models at different metallicities. In these models, the mixing length theory is used to characterize the envelope convection zones. We find the iron convection zone (FeCZ) to be more prominent for lower surface gravity, higher luminosity and higher initial metallicity. It is absent for luminosities below about $10^{3.2}Lsun$, $10^{3.9}Lsun$, and $10^{4.2}$Lsun$ for the Galaxy, LMC and SMC, respectively. We map the strength of the FeCZ on the Hertzsprung-Russell diagram for three metallicities, and compare this with the occurrence of observational phenomena in O stars: microturbulence, non-radial pulsations, wind clumping, and line profile variability. The confirmation of all three trends for the FeCZ as function of stellar parameters by empirical microturbulent velocities argues for a physical connection between sub-photospheric convective motions and small scale stochastic velocities in the photosphere of O- and B-type stars. We further suggest that clumping in the inner parts of the winds of OB stars could be caused by the same mechanism, and that magnetic fields produced in the FeCZ could appear at the surface of OB stars as diagnosed by discrete absorption components in ultraviolet absorption lines.
177 - A. Lobel , 2010
We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions (CIRs) and `Rotational Modulation Regions (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that the modulations are produced by a regular pattern of radial density enhancements that protrude almost linearly into the equatorial wind. We find that the modulations are caused by narrow `spoke-like wind regions. We present a hydrodynamic model showing that the linearly shaped radial wind pattern can be caused by mechanical wave action at the base of the stellar wind from the blue supergiant.
We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability could create shocks. The X-ray emitting plasma reaches temperatures up to 50,MK, and is embedded within the un-shocked, cool stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the line-driving instability nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow sticky clumps that resist acceleration. Our new data show that the X-rays in single WR-star are generated by some special mechanism different from the one operating in the O-star winds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا