Do you want to publish a course? Click here

Testing the Low-Mass End of X-Ray Scaling Relations with a Sample of Chandra Galaxy Groups

134   0   0.0 ( 0 )
 Added by Helen Eckmiller
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Well-determined scaling relations between X-ray observables and cluster mass are essential for using large cluster samples for cosmology. Cluster relations such as the Lx-T, M-T, Lx-M relations, have been investigated extensively, however the question remains whether these relations hold true also for groups. Some evidence supports a break at low masses, possibly caused by the influence of non-gravitational physics on low-mass systems. The main goal of this work is to test scaling relations for the low-mass range to check whether there is a systematic difference between clusters and groups, and to extend this method of reliable cluster mass determination for future samples down to the group regime. We compiled a statistically complete sample of 112 X-ray galaxy groups, 26 with Chandra data. Temperature, metallicity, and surface brightness profiles were created, and used to determine the main physical quantities and scaling relations. We then compared the group properties to the HIFLUGCS clusters and other samples. We present profiles and scaling relations of the whole sample. T and Z profiles behave universally, except for the cores. The Lx-T, M-T, Lx-M, Mg-M, M-Yx, and Lx-Yx relations are in good agreement with clusters. The Lx-T relation steepens for T<3keV, which could point to a larger impact of heating mechanisms on cooler systems. We found a strong drop in the gas mass fraction below 1keV, which indicates the ICM is less dominant in groups and the galaxies have a stronger influence on the system. In all relations the intrinsic scatter for groups is larger, which appears not correlated with merger activity but could be due to scatter caused by baryonic physics in the group cores. We also demonstrate the importance of selection effects. We have found evidence for a similarity break between groups and clusters. However this does not have a strong effect on scaling relations.



rate research

Read More

169 - B. Comis 2011
We explore the scaling relation between the flux of the Sunyaev-Zeldovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate the robustness of the constant gas fraction assumption, for fixed overdensity, and of the Yx proxy (Kravstov et al. 2007) considering CC and NCC clusters, again sorted on K0 from our sample. We extend our study to implement a K0-proxy, obtained by combining SZ and X-ray observables, which is proposed to provide a CC indicator for higher redshift objects. Finally, we suggest that an SZ-only CC indicator could benefit from the employment of deprojected Comptonization radial profiles.
158 - C. J. Short 2010
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millennium Gas Project and are some of the largest hydrodynamical N-body simulations ever carried out. Feedback is implemented using a hybrid scheme, where the energy input into intracluster gas by SNe and AGN is taken from a semi-analytic model of galaxy formation. This ensures that the source of feedback is a population of galaxies that closely resembles that found in the real universe. We show that our feedback model is capable of reproducing observed local X-ray scaling laws, at least for non-cool core clusters, but that almost identical results can be obtained with a simplistic preheating model. However, we demonstrate that the two models predict opposing evolutionary behaviour. We have examined whether the evolution predicted by our feedback model is compatible with observations of high-redshift clusters. Broadly speaking, we find that the data seems to favour the feedback model for z<0.5, and the preheating model at higher redshift. However, a statistically meaningful comparison with observations is impossible, because the large samples of high-redshift clusters currently available are prone to strong selection biases. As the observational picture becomes clearer in the near future, it should be possible to place tight constraints on the evolution of the scaling laws, providing us with an invaluable probe of the physical processes operating in galaxy clusters.
We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15$le$z$le$0.3 observed with $Chandra$. We investigate the luminosity-mass ($LM$) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilise a method to fully account for selection biases when modeling the $LM$ relation, and find that the $LM$ relation is significantly different than the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2$pm$0.4 times higher (when accounting for selection effects) than the average for a given mass, its mass is 30% lower than the population average for a given luminosity. Equivalently, using the $LM$ relation measured from this sample without correcting for selection biases would lead to the underestimation by 40% of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the $Y_{X}$ parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.
255 - J. Liu , J. Mohr , A. Saro 2014
(Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8$sigma$ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.
121 - N.G. Czakon , J. Sayers , A. Mantz 2014
We present scaling relations between the integrated Sunyaev-Zeldovich Effect (SZE) signal, $Y_{rm SZ}$, its X-ray analogue, $Y_{rm X}equiv M_{rm gas}T_{rm X}$, and total mass, $M_{rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{rm X}$, and mass, $M_{rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with Chandra, and $M_{rm tot}$ is derived from $M_{rm gas}$ assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$--$Y_{rm X}$ scaling to have a power-law index of $0.84pm0.07$, and a fractional intrinsic scatter in $Y_{2500}$ of $(21pm7)%$ at fixed $Y_{rm X}$, both of which are consistent with previous analyses. We also measure the scaling between $Y_{2500}$ and $M_{2500}$, finding a power-law index of $1.06pm0.12$ and a fractional intrinsic scatter in $Y_{2500}$ at fixed mass of $(25pm9)%$. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5$sigma$. Given the good agreement between the measured $Y_{2500}$--$Y_{rm X}$ scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا