Do you want to publish a course? Click here

Resolved Measurements of Xco in NGC 6946

147   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the largest sample to date of giant molecular clouds (GMCs) in a substantial spiral galaxy other than the Milky Way. We map the distribution of molecular gas with high resolution and image fidelity within the central 5 kpc of the spiral galaxy NGC 6946 in the 12CO (J=1-0) transition. By combining observations from the Nobeyama Radio Observatory 45-meter single dish telescope and the Combined Array for Research in Millimeter Astronomy (CARMA) interferometer, we are able to obtain high image fidelity and accurate measurements of LCO compared with previous purely interferometric studies. We resolve individual giant molecular clouds (GMCs), measure their luminosities and virial masses, and derive Xco - the conversion factor from CO measurements to H2 masses - within individual clouds. On average, we find that Xco = 1.2 times 10^20 cm-2 / (K km s-1), which is consistent within our uncertainties with previously derived Galactic values as well as the value we derive for Galactic GMCs above our mass sensitivity limit. The properties of our GMCs are largely consistent with the trends observed for molecular clouds detected in the Milky Way disk, with the exception of six clouds detected within sim400 pc of the center of NGC 6946, which exhibit larger velocity dispersions for a given size and luminosity, as has also been observed at the Galactic center.



rate research

Read More

We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) delta function component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.
The [CII] fine-structure transition at 158 micron is frequently the brightest far-infrared line in galaxies. Due to its low ionization potential, C+ can trace the ionized, atomic, and molecular phases of the ISM. We present velocity resolved [CII] and [NII] pointed observations from SOFIA/GREAT on ~500 pc scales in the nearby galaxies M101 and NGC 6946 and investigate the multi-phase origin of [CII] emission over a range of environments. We show that ionized gas makes a negligible contribution to the [CII] emission in these positions using [NII] observations. We spectrally decompose the [CII] emission into components associated with the molecular and atomic phases using existing CO(2-1) and HI data and show that a peak signal-to-noise ratio of 10-15 is necessary for a reliable decomposition. In general, we find that in our pointings greater than or equal to 50% of the [CII] emission arises from the atomic phase, with no strong dependence on star formation rate, metallicity, or galactocentric radius. We do find a difference between pointings in these two galaxies, where locations in NGC 6946 tend to have larger fractions of [CII] emission associated with the molecular phase than in M101. We also find a weak but consistent trend for fainter [CII] emission to exhibit a larger contribution from the atomic medium. We compute the thermal pressure of the cold neutral medium through the [CII] cooling function and find log(P_th/k)=3.8-4.6 [K cm^-3], a value slightly higher than similar determinations, likely because our observations are biased towards star-forming regions.
We constrained the progenitor masses for 169 supernova remnants, 8 historically observed supernovae, and the black hole formation candidate in NGC 6946, finding that they are consistent with originating from a standard initial mass function. Additionally, there were 16 remnants that showed no sign of nearby star formation consistent with a core-collapse supernova, making them good Type Ia candidates. Using $Hubble$ $Space$ $Telescope$ broadband imaging, we measured stellar photometry of ACS/WFC fields in F435W, F555W, F606W, and F814W filters as well as WFC3/UVIS fields in F438W, F606W, and F814W. We then fitted this photometry with stellar evolutionary models to determine the ages of the young populations present at the positions of the SNRs and SNe. We then infer a progenitor mass probability distribution from the fitted age distribution. For 37 SNRs we tested how different filter combinations affected the inferred masses. We find that filters sensitive to H$alpha$, [N II], and [S II] gas emission can bias mass estimates for remnants that rely on our technique. Using a KS-test analysis on our most reliable measurements, we find the progenitor mass distribution is well-matched by a power-law index of $-2.6^{+0.5}_{-0.6}$, which is consistent with a standard initial mass function.
The relatively nearby spiral galaxy NGC~6946 is one of the most actively star forming galaxies in the local Universe. Ten supernovae (SNe) have been observed since 1917, and hence NGC6946 surely contains a large number of supernova remnants (SNRs). Here we report a new optical search for these SNRs using narrow-band images obtained with the WIYN telescope. We identify 147 emission nebulae as likely SNRs, based on elevated [SII]:Halpha ratios compared to HII regions. We have obtained spectra of 102 of these nebulae with Gemini North-GMOS; of these, 89 have [SII]:Halpha ratios greater than 0.4, the canonical optical criterion for identifying SNRs. There is very little overlap between our sample and the SNR candidates identified by Lacey et al. (2001) from radio data. Also, very few of our SNR candidates are known X-ray sources, unlike the situation in some other galaxies such as M33 and M83. The emission line ratios, e.g., [NII]:Halpha, of the candidates in NGC6946 are typical of those observed in SNR samples from other galaxies with comparable metallicity. None of the candidates observed in our low-resolution spectra show evidence of anomalous abundances or significant velocity broadening. A search for emission at the sites of all the historical SNe in NGC6946 resulted in detections for only two: SN1980K and SN2004et. Spectra of both show very broad, asymmetric line profiles, consistent with the interaction between SN ejecta and the progenitor stars circumstellar material, as seen in late spectra from other core-collapse SNe of similar age.
We measure the radial profile of the 12CO(1-0) to H_2 conversion factor (Xco) in NGC 628. The Halpha emission from the VENGA integral field spectroscopy is used to map the star formation rate surface density (Sigma_{SFR}). We estimate the molecular gas surface density (Sigma_{H2}) from Sigma_{SFR} by inverting the molecular star formation law (SFL), and compare it to the CO intensity to measure Xco. We study the impact of systematic uncertainties by changing the slope of the SFL, using different SFR tracers (Halpha vs. far-UV plus 24mu m), and CO maps from different telescopes (single-dish and interferometers). The observed Xco profile is robust against these systematics, drops by a factor of 2 from R~7 kpc to the center of the galaxy, and is well fit by a gradient Delta log(Xco)=0.06pm0.02 dex kpc^-1. We study how changes in Xco follow changes in metallicity, gas density, and ionization parameter. Theoretical models show that the gradient in Xco can be explained by a combination of decreasing metallicity, and decreasing Sigma_{H2} with radius. Photoelectric heating from the local UV radiation field appears to contribute to the decrease of Xco in higher density regions. Our results show that galactic environment plays an important role at setting the physical conditions in star forming regions, in particular the chemistry of carbon in molecular complexes, and the radiative transfer of CO emission. We caution against adopting a single Xco value when large changes in gas surface density or metallicity are present.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا