Do you want to publish a course? Click here

The First High Redshift Quasar from Pan-STARRS

337   0   0.0 ( 0 )
 Added by Eric Morganson
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of the first high redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i dropoutout in PS1, confirmed photometrically with the SAO Widefield InfraRed Camera (SWIRC) at Arizonas Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph (TWIN) at the Calar Alto 3.5 m telescope. It has a redshift of 5.73, an AB z magnitude of 19.4, a luminosity of 3.8 x 10^47 erg/s and a black hole mass of 6.9 x 10^9 solar masses. It is a Broad Absorption Line quasar with a prominent Ly-beta peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high redshift quasar search that is projected to discover more than a hundred i dropout quasars, and could potentially find more than 10 z dropout (z > 6.8) quasars.



rate research

Read More

The Pan-STARRS 1 (PS1) survey of M31 (PAndromeda) is designed to identify gravitational microlensing events, caused by bulge and disk stars (self-lensing) and by compact matter in the halos of M31 and the Milky Way (halo lensing, or lensing by MACHOs). With the 7 deg2 FOV of PS1, the entire disk of M31 can be imaged with one single pointing. Our aim is to monitor M31 with this wide FOV with daily sampling (20 mins/day). In the 2010 season we acquired in total 91 nights towards M31, with 90 nights in the rP1 and 66 nights in the iP1. The total integration time in rP1 and iP1 are 70740s and 36180s, respectively. As a preliminary analysis, we study a 40times40 sub-field in the central region of M31, a 20times20 sub-field in the disk of M31 and a 20times20 sub-field for the investigation of astrometric precision. We demonstrate that the PSF is good enough to detect microlensing events. We present light curves for 6 candidate microlensing events. This is a competitive rate compared to previous M31 microlensing surveys. We finally also present one example light curve for Cepheids, novae and eclipsing binaries in these sub-fields.
302 - Eugene A. Magnier 2016
The Pan-STARRS Data Processing System is responsible for the steps needed to downloaded, archive, and process all images obtained by the Pan-STARRS telescopes, including real-time detection of transient sources such as supernovae and moving objects including potentially hazardous asteroids. With a nightly data volume of up to 4 terabytes and an archive of over 4 petabytes of raw imagery, Pan-STARRS is solidly in the realm of Big Data astronomy. The full data processing system consists of several subsystems covering the wide range of necessary capabilities. This article describes the Image Processing Pipeline and its connections to both the summit data systems and the outward-facing systems downstream. The latter include the Moving Object Processing System (MOPS) & the public database: the Published Science Products Subsystem (PSPS).
We present the details of the photometric and astrometric calibration of the Pan-STARRS1 $3pi$ Survey. The photometric goals were to reduce the systematic effects introduced by the camera and detectors, and to place all of the observations onto a photometric system with consistent zero points over the entire area surveyed, the ~30,000 square degrees north of $delta$ = -30 degrees. The astrometric calibration compensates for similar systematic effects so that positions, proper motions, and parallaxes are reliable as well. The Pan-STARRS Data Release 2 (DR2) astrometry is tied to the Gaia DR1 release.
[abridged] We present the results of a pilot study for the extended MACS survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z>0.5. Our pilot study applies the eMACS concept to the 71 deg^2 area extended by the ten fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g,r, i, and z bands in a 5x5 arcmin^2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS database, i.e., all RASS sources listed in the Bright and Faint Source Catalogs (BSC and FSC) that fall within the MDS footprint. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z>0.3. X-ray follow-up observations will be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20,000 deg^2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z>0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging. Representing a tremendous gain over the presently known two dozen such systems from X-ray, optical, and SZ cluster surveys combined, the sample of over 100 extremely massive clusters at z>0.5 expected from eMACS would be invaluable for the identification of the most powerful gravitational lenses in the Universe, as well as for in-depth and statistical studies of the physical properties of the most massive galaxy clusters out to z~1.
389 - S. Pipien , J. G. Cuby , S. Basa 2018
Being observed only one billion years after the Big Bang, z ~ 7 quasars are a unique opportunity for exploring the early Universe. However, only two z ~ 7 quasars have been discovered in near-infrared surveys: the quasars ULAS J1120+0641 and ULAS J1342+0928 at z = 7.09 and z = 7.54, respectively. The Canada-France High-z Quasar Survey in the Near Infrared (CFHQSIR) has been carried out to search for z ~ 7 quasars using near-infrared and optical imaging from the Canada-France Hawaii Telescope (CFHT). Our data consist of $rm{sim 130,deg^{2}}$ of Wide-field Infrared Camera (WIRCam) Y-band images up to a 5{sigma} limit of $rm{Y_{AB}}$ ~ 22.4 distributed over the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Wide fields. After follow-up observations in J band, a first photometric selection based on simple colour criteria led us to identify 36 sources with measured high-redshift quasar colours. However, we expect to detect only ~ 2 quasars in the redshift range 6.8 < z < 7.5 down to a rest-frame absolute magnitude of $rm{M_{1450}}$ = -24.6. With the motivation of ranking our high-redshift quasar candidates in the best possible way, we developed an advanced classification method based on Bayesian formalism in which we model the high-redshift quasars and low-mass star populations. The model includes the colour diversity of the two populations and the variation in space density of the low-mass stars with Galactic latitude, and it is combined with our observational data. For each candidate, we compute the probability of being a high-redshift quasar rather than a low-mass star. This results in a refined list of the most promising candidates. Our Bayesian selection procedure has proven to be a powerful technique for identifying the best candidates of any photometrically selected sample of objects, and it is easily extendable to other surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا