No Arabic abstract
We demonstrate coherent control of cyclotron resonance (CR) in a two-dimensional electron gas (2DEG). We use a sequence of terahertz pulses to control the amplitude of CR oscillations in an arbitrary fashion via phase-dependent coherent interactions. We observe a self-interaction effect, where the 2DEG interacts with the terahertz field emitted by itself within the decoherence time, resulting in a revival and collapse of quantum coherence. These observations are accurately describable using {em single-particle} optical Bloch equations, showing no signatures of electron-electron interactions, which verifies the validity of Kohns theorem for CR in the coherent regime.
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility ($>{10}^{6} mathrm{cm^{2} V^{-1} s^{-1}}$) sample without being affected by the saturation effect.
We calculate the density of states of a two dimensional electron gas located at the interface of a GaAlAs/GaAs heterojunction. The disorder potential which is generally created by a single doping layer behind a spacer, is here enhanced by the presence of a second delta doped layer of scatterers which can be repulsive or attractive impurities. We have calculated the density of states by means of the Klauders approximation, in the presence of a magnetic field of arbitrary strength. At low field either band tails or impurity bands are observed for attractive potentials, depending on the impurity concentration. At higher field, impurity bands are observed for both repulsive and attractive potentials. We discuss the effect of such an asymmetrical density of states on the transport properties in the quantum Hall effect regime.
Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished through a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in GaAs-AlGa$_{0.3}$As$_{0.7}$ heterostructures, and can be well explained by the Zener mechanism.
Using scanning gate microscopy (SGM), we probe the scattering between a beam of electrons and a two-dimensional electron gas (2DEG) as a function of the beams injection energy, and distance from the injection point. At low injection energies, we find electrons in the beam scatter by small-angles, as has been previously observed. At high injection energies, we find a surprising result: placing the SGM tip where it back-scatters electrons increases the differential conductance through the system. This effect is explained by a non-equilibrium distribution of electrons in a localized region of 2DEG near the injection point. Our data indicate that the spatial extent of this highly non-equilibrium distribution is within ~1 micrometer of the injection point. We approximate the non-equilibrium region as having an effective temperature that depends linearly upon injection energy.
We report the experimental realization of a non-galvanic, primary thermometer capable of measuring the electron temperature of a two-dimensional electron gas with negligible thermal load. Such a thermometer consists of a quantum dot whose temperature-dependent, single-electron transitions are detected by means of a quantum-point-contact electrometer. Its operating principle is demonstrated for a wide range of electron temperatures from 40 to 800 mK. This noninvasive thermometry can find application in experiments addressing the thermal properties of micrometer-scale mesoscopic electron systems, where heating or cooling electrons requires relatively low thermal budgets.