Do you want to publish a course? Click here

Herschel Observations of the T Cha Transition Disk: Constraining the Outer Disk Properties

123   0   0.0 ( 0 )
 Added by Lucas Cieza
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

T Cha is a nearby (d = 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. (2011) recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 micron) of T Cha from the Dust, Ice, and Gas in Time (DIGIT) Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 micron without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond 40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Chas outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.



rate research

Read More

(Abridged) Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the dust and consequently the SED. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-IR. We analyze a full set of data (including VLTI/Pionier, VLTI/Midi, and VLT/NaCo/Sam) to constrain the structure of the transition disk around TCha. We used the Mcfost radiative transfer code to simultaneously model the SED and the interferometric observations. We find that the dust responsible for the emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU). We find that the outer disk starts at about 12 AU and is partially resolved by the Pionier, Sam, and Midi instruments. We show that the Sam closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the outer disk. The presence of matter inside the gap is difficult to assess with present-day observations. Our model suggests the outer disk contaminates the interferometric signature of any potential companion that could be responsible for the gap opening, and such a companion still has to be unambiguously detected. We stress the difficulty to observe point sources in bright massive disks, and the consequent need to account for disk asymmetries (e.g. anisotropic scattering) in model-dependent search for companions.
585 - W.F. Thi , G. Mathews , F. Menard 2010
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [12CO]/[13CO]=69 suggests a dust mass for grains with radius < 1 mm of ~1.9 times 10^-4 Msun (total solid mass of 3 times 10^-3 Msun) and a gas mass of (0.5--5) times 10^-3 Msun. The gas-to-dust mass may be lower than the standard interstellar value of 100.
As part of the Dust, Ice, and Gas In Time (DIGIT) Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350 and 500 micron) of 31 Weak-Line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Thirteen stars in our sample had circumstellar disks previously known from infrared observations at shorter wavelengths, while eighteen of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Seven of the 15 disks appear to be optically thick primordial disks, including two objects with SEDs indistinguishable from those of typical Classical T Tauri stars, four objects that have significant deficit of excess emission at all IR wavelengths, and one pre-transitional object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 micron Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 micron fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F70/F70,star > 5 - 15 and L,disk/L,star > 1xE-3 to 1xE-4 can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.
The Nearby Young Moving Groups (NYMGs) of stars are ideal for the study of evolution circumstellar disks in which planets may form because their ages range from a few Myr to about 100 Myr, about the same as the interval over which planets are thought to form. Their stars are distributed over large regions of the sky. Hence, the Wide Field Infrared Survey Explorer (WISE) which scanned the entire sky in four bands from 3.4 to 22.1 mu provides a database well-suited for the study of members of the NYMGs, particularly those identified after the eras of the IRAS and Spitzer observatories. We report our study of the stars in the epsilon and eta Cha, TW Hya, beta Pic, Tuc-Hor, and AB Dor NYMGs. The WISE Preliminary Release Source Catalog, which covers 57% of the sky, contains data for 64% of the stars in our search lists. WISE detected the 11.6 and 22.1 mu emission of all the previously known disks except for the coldest one, AU Mic. WISE detected no disks in the Tuc-Hor and AB Dor groups, the two oldest in our sample; the frequency of disks detected by WISE decreases rapidly with age of the group. WISE detected a circumstellar disk associated with 2M J0820-8003, a pre-main sequence star with episodic accretion in the ~ 6 Myr old eta Cha cluster. The inner radius of the disk extends close to the star, ~0.02 AU and its luminosity is about a tenth that of the star. The episodic accretion is probably powered by the circumstellar disk discussed here.
We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the Gas in Protoplanetary Systems (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 mu m; 49 Cet is significantly extended in the 70 mu m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [OI] 63 mu m and [CII] 158 mu m. The CII line was detected at the 5sigma level - the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the OI line is the brightest one observed in Herschel protoplanetary disk spectra (Meeus et al. 2012; Dent et al. 2013). We present an estimate of the amount of circumstellar atomic gas implied by the CII emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا