No Arabic abstract
Motivated by predictions of a substantial contribution of the buckling vibration of the CuO2 layers to d-wave superconductivity in the cuprates, we have performed an inelastic neutron scattering study of this phonon in an array of untwinned crystals of YBa2Cu3O7. The data reveal a pronounced softening of the phonon at the in-plane wave vector q = (0, 0.3) upon cooling below ~ 105 K, but no corresponding anomaly at q = (0.3, 0). Based on the observed in-plane anisotropy, we argue that the electron-phonon interaction responsible for this anomaly supports an electronic instability associated with a uniaxial charge-density modulation and does not mediate d-wave superconductivity.
The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T_N = 138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1} (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T_N; for T < T_N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local-moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtained by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowleys legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the origin of two-dimensional reciprocal space. The signal is highly dispersive, and decreases in intensity with increasing temperature. We interpret these observations as direct evidence for the existence of ferromagnetic spin fluctuations within the cobalt-oxygen layers.
This paper, I, presents new results from neutron inelastic scattering experiments on single crystals of UPd2Al3. The focus is on the experimental position whilst the sequel, II, advances theoretical perspectives. We present a detailed and complete characterisation of the wavevector- and energy-dependent magnetisation dynamics in UPd2Al3 as measured by neutron inelastic scattering primarily in the form of extensive surveys in energy-momentum space under a wide range of experimental conditions, and put our observations in context with data that has been previously published by two independent groups. In this way we emphasize the commonality and robust nature of the data which indicate the intricate nature of the dynamic magnetic susceptibility of this material. Our results yield unique insight into the low temperature ground state which exhibits a microscopic coexistence of antiferromagnetism and superconductivity making UPd2Al3 one of the most accessible heavy-fermion superconductors that can be fully characterised by neutron spectroscopy.