Do you want to publish a course? Click here

Experimental manifestations of the Nb^{4+}-O^{-} polaronic excitons in KTa_{0.988}Nb_{0.012}O_{3}

59   0   0.0 ( 0 )
 Added by Roman Yusupov
 Publication date 2011
  fields Physics
and research's language is English
 Authors R. V. Yusupov




Ask ChatGPT about the research

The formation of the photo-polaronic excitons in ABO_{3} perovskite type oxides has been detected experimentally by means of the photoinduced electron paramagnetic resonance studies of KTa_{0.998}Nb_{0.012}O_{3} crystals. The corresponding microwave X-band spectrum at T < 10 K consists of a narrow, nearly isotropic signal located at g ~ 2 and a strongly anisotropic component. The first signal, which has a rich structure due to hyperfine interactions with the lattice nuclei, is attributed to the single trapped charge carriers: the electrons and/or the holes. The anisotropic spectrum is caused by the axial centers oriented along the C_{4} pseudo-cubic principal crystalline axes. The spectrum angular dependence can be described well by an axial center with S = 1, g_{parallel) = 0.82, g_{perp} = 0.52 and D = 0.44 cm^{-1}. The anisotropic spectrum is attributed to the Nb^{4+}-O^{-} polaronic excitons. The temperature dependence of the anisotropic component is characterized by two activation energies: the internal dynamics activation E_{a1} = 3.7pm0.5 meV, which makes the EPR spectrum unobservable above 10 K, and the destruction energy E_{a2} = 52pm4 meV. By comparing the anisotropic photo-EPR spectrum and the photoinduced optical absorption temperature dependencies, we found that the Nb^{4+}-O^{-} polaronic excitons also manifested themselves via the ~0.7 eV wide absorption band arising under UV light excitation in the weakly concentrated KTaO_{3}:Nb crystals.

rate research

Read More

We have characterized the dynamics of the polar nanoregions in Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ (PMN) through high-resolution neutron backscattering and spin-echo measurements of the diffuse scattering cross section. We find that the diffuse scattering intensity consists of emph{both} static and dynamic components. The static component first appears at the Curie temperature $Theta sim 400$ K, while the dynamic component freezes completely at the temperature T$_{f} sim 200$ K; together, these components account for all of the observed spectral weight contributing to the diffuse scattering cross section. The integrated intensity of the dynamic component peaks near the temperature at which the frequency-dependent dielectric constant reaches a maximum (T$_{max}$) when measured at 1 GHz, i. e. on a timescale of $sim 1$ ns. Our neutron scattering results can thus be directly related to dielectric and infra-red measurements of the polar nanoregions. Finally, the global temperature dependence of the diffuse scattering can be understood in terms of just two temperature scales, which is consistent with random field models.
A neutron scattering investigation of the magnetoelectric coupling in PbFe_{1/2}Nb_{1/2}O_{3} (PFN) has been undertaken. Ferroelectric order occurs below 400 K, as evidenced by the softening with temperature and subsequent recovery of the zone center transverse optic phonon mode energy (hbar Omega_{0}). Over the same temperature range, magnetic correlations become resolution limited on a terahertz energy scale. In contrast to the behavior of nonmagnetic disordered ferroelectrics (namely Pb(Mg,Zn)_{1/3}Nb_{2/3}O_{3}), we report the observation of a strong deviation from linearity in the temperature dependence of (hbar Omega_{0})^{2}. This deviation is compensated by a corresponding change in the energy scale of the magnetic excitations, as probed through the first moment of the inelastic response. The coupling between the short-range ferroelectric and antiferromagnetic correlations is consistent with calculations showing that the ferroelectricity is driven by the displacement of the body centered iron site, illustrating the multiferroic nature of magnetic lead based relaxors in the dynamical regime.
High-temperature (T) and high-electric-field (E) effects on Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}]O_3 (PZN-8%PT) were studied comprehensively by neutron diffraction in the ranges 300 <= T <= 550 K and 0 <= E <= 15 kV/cm. We have focused on how phase transitions depend on preceding thermal and electrical sequences. In the field cooling process (FC, E parallel [001] >= 0.5 kV/cm), a successive cubic (C) --> tetragonal (T) --> monoclinic (M_C) transition was observed. In the zero field cooling process (ZFC), however, we have found that the system does not transform to the rhombohedral (R) phase as widely believed, but to a new, unidentified phase, which we call X. X gives a Bragg peak profile similar to that expected for R, but the c-axis is always slightly shorter than the a-axis. As for field effects on the X phase, we found an irreversible X --> M_C transition via another monoclinic phase (M_A) as expected from a previous report [Noheda et al. Phys. Rev. Lett. 86, 3891 (2001)]. At a higher electric field, we confirmed a c-axis jump associated with the field-induced M_C --> T transition, which was observed by strain and x-ray diffraction measurements.
352 - N. Naka , N. Nagasawa 2003
Density distribution of cold exciton clouds generated into a strain-induced potential well by two-photon excitation in Cu$_2$O is studied at 2 K. We find that an anomalous spike, which can be interpreted as accumulation of the excitons into the ground state, emerges at the potential minimum. The accumulation can be due to stimulated scattering of cold excitons, mediated by acoustic phonon emission. Possibility of the formation of the thermodynamic Bose-Einstein condensate of paraexcitons has been discussed.
We investigate the low temperature behaviour of Pb(In$_{1/2}$Nb$_{1/2}$)O$_{3}$-Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$ using dielectric permittivity measurements. We compare single crystal plates measured in the [001] and [111] directions with a polycrystalline ceramic of the same composition. Poled crystals behave very differently to unpoled crystals, whereas the dielectric spectrum of the ceramic changes very little on poling. A large, frequency dependent dielectric relaxation seen in the poled [001] crystal around 100 K is much less prominent in the [111] crystal, and doesnt occur in the ceramic. Preparation conditions and the microstructure of the material play a role in the low temperature dynamics of relaxor-ferroelectric crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا