No Arabic abstract
We interpret within the phenomenological MSSM (pMSSM) the results of SUSY searches published by the CMS collaboration based on the first ~1 fb^-1 of data taken during the 2011 LHC run at 7 TeV. The pMSSM is a 19-dimensional parametrization of the MSSM that captures most of its phenomenological features. It encompasses, and goes beyond, a broad range of more constrained SUSY models. Performing a global Bayesian analysis, we obtain posterior probability densities of parameters, masses and derived observables. In contrast to constraints derived for particular SUSY breaking schemes, such as the CMSSM, our results provide more generic conclusions on how the current data constrain the MSSM.
The recent results from the ATLAS and CMS collaborations show that the allowed range for a Standard Model Higgs boson is now restricted to a very thin region. Although those limits are presented exclusively in the framework of the SM, the searches themselves remain sensitive to other Higgs models. We recast the limits within a generic supersymmetric framework that goes beyond the usual minimal extension. Such a generic model can be parameterised through a supersymmetric effective Lagrangian with higher order operators appearing in the Kahler potential and the superpotential, an approach whose first motivation is to alleviate the fine-tuning problem in supersymmetry with the most dramatic consequence being a substantial increase in the mass of the lightest Higgs boson as compared to the minimal supersymmetic model. We investigate in this paper the constraints set by the LHC on such models. We also investigate how the present picture will change when gathering more luminosity. Issues of how to combine and exploit data from the LHC dedicated to searches for the standard model Higgs to such supersymmetry inspired scenarios are discussed. We also discuss the impact of invisible decays of the Higgs in such scenarios.
Separate, validated implementations of the ATLAS and CMS new physics analyses are necessary to fully exploit the potential of these searches. To this end, we use MadAnalysis 5, a public framework for collider phenomenology. In this talk, we present recent developments of MadAnalysis 5, as well as a new public database of reimplemented LHC analyses. The validation of one ATLAS and one CMS search for supersymmetry, present in the database, is also summarized.
It was shown in a previous study that a lightest neutralino with mass below 30 GeV was severely constrained in the minimal supersymmetric standard model (MSSM), unless it annihilates via a light stau and thus yields the observed dark matter abundance. In such a scenario, while the stau is the next-to-lightest supersymmetric particle (NLSP), the charginos and the other neutralinos as well as sleptons of the first two families are also likely to be not too far above the mass bounds laid down by the Large Electron Positron (LEP) collider. As the branching ratios of decays of the charginos and the next-to-lightest neutralino into staus are rather large, one expects significant rates of tau-rich final states in such a case. With this in view, we investigate the same-sign ditau and tri-tau signals of this scenario at the Large Hadron Collider (LHC) for two MSSM benchmark points corresponding to light neutralino dark matter. The associated signal rates for these channels are computed, for the centre-of-mass energy of 14 TeV. We find that both channels lead to appreciable rates if the squarks and the gluino are not too far above a TeV, thus allowing to probe scenarios with light neutralinos in the 14 TeV LHC run with 10-100 fb^{-1}.
We present a case study for the synergy of combined LHC and LC analyses in Susy searches in which simultaneous running of both machines is very important. In this study only light non-coloured Susy particles are accessible at a Linear Collider with an initial energy of $sqrt{s}=500$ GeV. Nevertheless the precise analysis at the LC leads to an accurate Susy parameter determination and prediction of heavy Susy particles. Providing these LC results as input for the LHC analyses could be crucial for the identification of signals resulting in a direct measurement of the heavy neutralinos. The interplay of the LHC and LC will thus provide an important consistency test of the underlying model.
The CMS and the ATLAS Collaborations have recently reported on the search for supersymmetry with 35 pb$^{-1}$ of data and have put independent limits on the parameter space of the supergravity unified model with universal boundary conditions at the GUT scale for soft breaking, i.e., the mSUGRA model. We extend this study by examining other regions of the mSUGRA parameter space in $A_0$ and $tanbeta$. Further, we contrast the reach of CMS and ATLAS with 35 pb$^{-1}$ of data with the indirect constraints, i.e., the constraints from the Higgs boson mass limits, from flavor physics and from the dark matter limits from WMAP. Specifically it is found that a significant part of the parameter space excluded by CMS and ATLAS is essentially already excluded by the indirect constraints and the fertile region of parameter space has yet to be explored. We also emphasize that gluino masses as low as 400 GeV but for squark masses much larger than the gluino mass remain unconstrained and further that much of the hyperbolic branch of radiative electroweak symmetry breaking, with low values of the Higgs mixing parameter $mu$, is essentially untouched by the recent LHC analysis.