The Unified Method: III Non-Linearizable Problems on the Interval


Abstract in English

Boundary value problems for integrable nonlinear evolution PDEs formulated on the finite interval can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex $k$-plane (the Fourier plane), which has a jump matrix with explicit $(x,t)$-dependence involving six scalar functions of $k$, called spectral functions. Two of these functions depend on the initial data, whereas the other four depend on all boundary values. The most difficult step of the new method is the characterization of the latter four spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data. We present two different characterizations of this problem. One is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large $k$ asymptotics of the eigenfunctions defining the relevant spectral functions. The other is based on the analysis of the global relation and on the introduction of the so-called Gelfand-Levitan-Marchenko representations of the eigenfunctions defining the relevant spectral functions. We also show that these two different characterizations are equivalent and that in the limit when the length of the interval tends to infinity, the relevant formulas reduce to the analogous formulas obtained recently for the case of boundary value problems formulated on the half-line.

Download