Do you want to publish a course? Click here

The Distance of the Gamma-ray Binary 1FGL J1018.6-5856

116   0   0.0 ( 0 )
 Added by M. Virginia McSwain
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently discovered gamma-ray binary 1FGL J1018.6-5856 has a proposed optical/near-infrared (OIR) counterpart 2MASS 10185560-5856459. We present Stromgren photometry of this star to investigate its photometric variability and measure the reddening and distance to the system. We find that the gamma-ray binary has E(B-V) = 1.34 +/- 0.04 and d = 5.4^+4.6_-2.1 kpc. While E(B-V) is consistent with X-ray observations of the neutral hydrogen column density, the distance is somewhat closer than some previous authors have suggested.



rate research

Read More

Re-observations with the H.E.S.S. telescope array of the very-high-energy (VHE) source HESS J1018-589 A coincident with the Fermi-LAT $gamma$-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9$sigma$, and the detection of variability ($chi^2$/$ u$ of 238.3/155) in the emitted $gamma$-ray flux. This variability confirms the association of HESS J1018-589 A with the high-energy $gamma$-ray binary detected by Fermi-LAT, and also confirms the point-like source as a new very-high-energy binary system. The spectrum of HESS J1018-589 A is best fit with a power-law function with photon index $Gamma = 2.20 pm 0.14_{rm stat} pm 0.2_{rm sys}$. Emission is detected up to ~20 TeV. The mean differential flux level is $(2.9 pm 0.4)times10^{-13}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night lightcurve. When folded on the orbital period of 16.58 days, the rebinned lightcurve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the H.E.S.S. phaseogram to a constant flux provides evidence of periodicity at the level of 3$sigma$. The shape of the VHE phaseogram and measured spectrum suggest a low inclination, low eccentricity system with a modest impact from VHE $gamma$-ray absorption due to pair production ($tau$ < 1 at 300 GeV).
We present broadband spectral energy distributions (SEDs) and light curves of the gamma-ray binary 1FGL J1018.6$-$5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explain the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires inclination $sim$50$^circ$ and orbital eccentricity $sim$0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.
163 - Jay Strader 2015
We present multiwavelength observations of the persistent Fermi-LAT unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 M_sun) and a ~ 0.35 M_sun giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H-alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk--magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma-ray to X-ray luminosity (~ 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.
HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Here we present optical spectra of HD 259440 acquired to investigate the stellar parameters, the properties of the Be star disk, and evidence of binarity in this system. Emission from the H-alpha line shows evidence of a spiral density wave in the nearly edge-on disk. We find a best fit stellar effective temperature of 27500-30000 K and a log surface gravity of 3.75-4.0, although our fits are somewhat ambiguous due to scattered light from the circumstellar disk. We derive a mass of 13.2-19.0 M_sun and a radius of 6.0-9.6 R_sun. By fitting the spectral energy distribution, we find a distance between 1.1-1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long period (> 100 d) system.
Regardless of their different types of progenitors and central engines, gamma-ray bursts (GRBs) were always assumed to be standalone systems after they formed. Little attention has been paid to the possibility that a stellar companion can still accompany a GRB itself. This paper investigates such a GRB-involved binary system and studies the effects of the stellar companion on the observed GRB emission when it is located inside the jet opening angle. Assuming a typical emission radius of $sim10^{15},$cm, we show that the blockage by a companion star with a radius of $R_mathrm{c}sim67,mathrm{R_odot}$ becomes non-negligible when it is located within a typical GRB jet opening angle (e.g., $sim10$ degrees) and beyond the GRB emission site. In such a case, an on-axis observer will see a GRB with a similar temporal behavior but 25% dimmer. On the other hand, an off-axis observer outside the jet opening angle (hence missed the original GRB) can see a delayed reflected GRB, which is much fainter in brightness, much wider in the temporal profile and slightly softer in energy. Our study can naturally explain the origin of some low-luminosity GRBs. Moreover, we also point out that the companion star may be shocked if it is located inside the GRB emission site, which can give rise to an X-ray transient or a GRB followed by a delayed X-ray bump on top of X-ray afterglows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا