No Arabic abstract
The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.
We have used post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes for spectroscopic studies. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the near-infrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G^{-}) feature is a result of resonance with non-armchair metallic nanotubes. These findings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes lay the foundation for further spectroscopic studies to probe many-body physical phenomena in one dimension.
We have used resonant Raman scattering spectroscopy to fully analyze the relative abundances of different (n,m) species in single-walled carbon nanotube samples that are metallically enriched by density gradient ultracentrifugation. Strikingly, the data clearly show that our density gradient ultracentrifugation process enriches the metallic fractions in armchair and near-armchair species. We observe that armchair carbon nanotubes constitute more than 50% of each (2n + m) family.
In carbon nanotubes, the most abundant defects, caused for example by irradiation or chemisorption treatments, are small perturbing clusters, i.e. bi-site defects, extending over both A and B sites. The relative positions of these perturbing clusters play a crucial role in determining the electronic properties of carbon nanotubes. Using bandstructure and electronic transport calculations, we find out that in the case of armchair metallic nanotubes a band gap opens up when the clusters fulfill a certain periodicity condition. This phenomenon might be used in future nanoelectronic devices in which certain regions of single metallic nanotubes could be turned to semiconducting ones. Although in this work we study specifically the effect of hydrogen adatom clusters, the phenomenon is general for different types of defects. Moreover, we study the influence of the length and randomness of the defected region on the electron transport through it.
We present a novel floating catalyst synthesis route for individual, i.e. non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 microns were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7) and (9,6), with up to 70% of tubes having chiral angles over 20{deg}. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 {deg}C, which simultaneously increased the fraction of semiconducting tubes from 67 to 80%. Limiting the nanotube gas phase number concentration to approx. 100 000 per cubic centimetre successfully prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80 % of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ohms/sq. at 90 % transparency for 550 nm light.
We comment on the paper by H. Yoshioka and A. Odintsov, to appear in PRL, see cond-mat/9805106.