Do you want to publish a course? Click here

Investigation of the recombination of the retarded shell of born-again CSPNe by time-dependent radiative transfer models

89   0   0.0 ( 0 )
 Added by Stefan Kimeswenger
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A standard planetary nebula stays more than 10 000 years in the state of a photoionized nebula. As long as the timescales of the most important ionizing processes are much smaller, the ionization state can be characterized by a static photoionization model and simulated with codes like CLOUDY (Ferland et al. 1998). When the star exhibits a late Helium flash, however, its ionizing flux stops within a very short period. The star then re-appears from itsopaque shell after a few years (or centuries) as a cold giant star without any hard ionizing photons. Describing the physics of such behavior requires a fully time-dependent radiative transfer model. Pollacco (1999), Kerber et al. (1999) and Lechner & Kimeswenger (2004) used data of the old nebulae around V605 Aql and V4334 Sgr to derive a model of the pre-outburst state of the CSPN in a static model. Their argument was the long recombination time scale for such thin media. With regard to these models Schoenberner (2008) critically raised the question whether a significant change in the ionization state (and thus the spectrum) has to be expected after a time of up to 80 years, and whether static models are applicable at all.



rate research

Read More

We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate the formation of HuBi1 adopting mass-loss and stellar wind terminal velocity estimates obtained from observations presented by our group. We found that, if the inner shell of HuBi1 was formed by an explosive very late thermal pulse (VLTP) ejecting material with velocities of $sim$300 km s$^{-1}$, the age of this structure is consistent with that of $simeq$200 yr derived from multi-epoch narrow-band imaging. Our simulations predict that, as a consequence of the dramatic reduction of the stellar wind velocity and photon ionizing flux during the VLTP, the velocity and pressure structure of the outer H-rich nebula are affected creating turbulent ionized structures surrounding the inner shell. These are indeed detected in Gran Telescopio Canarias MEGARA optical observations. Furthermore, we demonstrate that the current relatively low ionizing photon flux from the central star of HuBi1 is not able to completely ionize the inner shell, which favors previous suggestions that its excitation is dominated by shocks. Our simulations suggest that the kinetic energy of the H-poor ejecta of HuBi1 is at least 30 times that of the clumps and filaments in the evolved born-again PNe A30 and A78, making it a truly unique VLTP event.
We present an infrared (IR) characterization of the born-again planetary nebulae (PNe) A30 and A78 using IR images and spectra. We demonstrate that the carbon-rich dust in A30 and A78 is spatially coincident with the H-poor ejecta and coexists with hot X-ray-emitting gas up to distances of 50$$ from the central stars (CSPNs). Dust forms immediately after the born-again event and survives for 1000 yr in the harsh environment around the CSPN as it is destroyed and pushed away by radiation pressure and dragged by hydrodynamical effects. Spitzer IRS spectral maps showed that the broad spectral features at 6.4 and 8.0 $mu$m, attributed to amorphous carbon formed in H-deficient environments, are associated with the disrupted disk around their CSPN, providing an optimal environment for charge exchange reactions with the stellar wind that produces the soft X-ray emission of these sources. Nebular and dust properties are modeled for A30 with Cloudy taking into account different carbonaceous dust species. Our models predict dust temperatures in the 40-230 K range, five times lower than predicted by previous works. Gas and dust masses for the born-again ejecta in A30 are estimated to be $M_mathrm{gas}=(4.41^{+0.55}_{-0.14})times10^{-3}$ M$_odot$ and $M_mathrm{dust}=(3.20^{+3.21}_{-2.06})times10^{-3}$ M$_odot$, which can be used to estimate a total ejected mass and mass-loss rate for the born-again event of $(7.61^{+3.76}_{-2.20})times10^{-3}$ M$_{odot}$ and $dot{M}=[5-60]times10^{-5}$ M$_{odot}$ yr$^{-1}$, respectively. Taking into account the carbon trapped into dust grains, we estimate that the C/O mass ratio of the H-poor ejecta of A30 is larger than 1, which favors the very late thermal pulse model over the alternate hypothesis of a nova-like event.
The emission from Sgr A*, the supermassive black hole in the Galactic Center, shows order of magnitude variability (flares) a few times a day that is particularly prominent in the near-infrared (NIR) and X-rays. We present a time-dependent model for these flares motivated by the hypothesis that dissipation of magnetic energy powers the flares. We show that episodic magnetic reconnection can occur near the last stable circular orbit in time-dependent magnetohydrodynamic simulations of black hole accretion - the timescales and energetics of these events are broadly consistent with the flares from Sgr A*. Motivated by these results, we present a spatially one-zone time-dependent model for the electron distribution function in flares, including energy loss due to synchrotron cooling and adiabatic expansion. Synchrotron emission from transiently accelerated particles can explain the NIR/X-ray lightcurves and spectra of a luminous flare observed 4 April 2007. A significant decrease in the magnetic field strength during the flare (coincident with the electron acceleration) is required to explain the simultaneity and symmetry of the simultaneous lightcurves. Our models predict that the NIR and X-ray spectral indices differ by 0.5 and that there is only modest variation in the spectral index during flares. We also explore implications of this model for longer wavelength (radio-submm) emission seemingly associated with X-ray and NIR flares; we argue that a few hour decrease in the submm emission is a more generic consequence of large-scale magnetic reconnection than delayed radio emission from adiabatic expansion.
246 - D. Riechers 2005
We investigate the pulsation-phase dependent properties of the circumstellar dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous modeling of the spectral energy distribution (SED) and near-infrared (NIR) visibilities (Riechers et al. 2004) has now been extended by means of a more detailed analysis of the pulsation-phase dependence of the model parameters of OH104.9+2.4. In order to investigate the temporal variation in the spatial structure of the CDS, additional NIR speckle interferometric observations in the K band were carried out with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the diffraction-limited resolution of 74 mas was attained. Several key parameters of our previous best-fitting model had to be adjusted in order to be consistent with the newly extended amount of observational data. It was found that a simple rescaling of the bolometric flux F_bol is not sufficient to take the variability of the source into account, as the change in optical depth over a full pulsation cycle is rather high. On the other hand, the impact of a change in effective temperature T_eff on SED and visibility is rather small. However, observations, as well as models for other AGB stars, show the necessity of including a variation of T_eff with pulsation phase in the radiative transfer models. Therefore, our new best-fitting model accounts for these changes.
Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. We describe the algorithms used in RAPTOR and test the codes performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا