Do you want to publish a course? Click here

A high-speed tunable beam splitter for feed-forward photonic quantum information processing

475   0   0.0 ( 0 )
 Added by Xiaosong Ma
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.



rate research

Read More

Photonic processors are pivotal for both quantum and classical information processing tasks using light. In particular, linear optical quantum information processing requires both largescale and low-loss programmable photonic processors. In this paper, we report the demonstration of the largest universal quantum photonic processor to date: a low-loss, 12-mode fully tunable linear interferometer with all-to-all coupling based on stoichiometric silicon nitride waveguides.
The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40% efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79% +/- 2% detection efficiency with a single pass, and 88% +/- 3% at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications.
Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.
Photons have been a flagship system for studying quantum mechanics, advancing quantum information science, and developing quantum technologies. Quantum entanglement, teleportation, quantum key distribution and early quantum computing demonstrations were pioneered in this technology because photons represent a naturally mobile and low-noise system with quantum-limited detection readily available. The quantum states of individual photons can be manipulated with very high precision using interferometry, an experimental staple that has been under continuous development since the 19th century. The complexity of photonic quantum computing device and protocol realizations has raced ahead as both underlying technologies and theoretical schemes have continued to develop. Today, photonic quantum computing represents an exciting path to medium- and large-scale processing. It promises to out aside its reputation for requiring excessive resource overheads due to inefficient two-qubit gates. Instead, the ability to generate large numbers of photons---and the development of integrated platforms, improved sources and detectors, novel noise-tolerant theoretical approaches, and more---have solidified it as a leading contender for both quantum information processing and quantum networking. Our concise review provides a flyover of some key aspects of the field, with a focus on experiment. Apart from being a short and accessible introduction, its many references to in-depth articles and longer specialist reviews serve as a launching point for deeper study of the field.
High-dimensional entangled photons are a key resource for advanced quantum information processing. Efficient processing of high-dimensional entangled photons requires the ability to synthesize their state using general unitary transformations. The leading technology for processing photons in high-dimensions is integrated multiport interferometers. However, such devices are incompatible with free-space and fiber-based systems, and their architecture poses significant scaling challenges. Here we unlock these limitations by demonstrating a reconfigurable processor of entangled photons that is based on multi-plane light conversion (MPLC), a technology that was recently developed for multiplexing hundreds of spatial modes for classical free-space and fiber communication. To demonstrate the flexibility of MPLC, we perform four key tasks of quantum information processing using the same MPLC hardware: entanglement certification, tailored two-photon interference, arbitrary state transformations, and mode conversion. Based on the high degree of control we obtain, we expect MPLC will become a leading platform for future quantum technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا