Do you want to publish a course? Click here

Chirality of Matter Shows Up via Spin Excitations

112   0   0.0 ( 0 )
 Added by Sandor Bordacs
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Right- and left-handed circularly polarized light interact differently with electronic charges in chiral materials. This asymmetry generates the natural circular dichroism and gyrotropy, also known as the optical activity. Here we demonstrate that optical activity is not a privilege of the electronic charge excitations but it can also emerge for the spin excitations in magnetic matter. The square-lattice antiferromagnet Ba$_2$CoGe$_2$O$_7$ offers an ideal arena to test this idea, since it can be transformed to a chiral form by application of external magnetic fields. As a direct proof of the field-induced chiral state, we observed large optical activity when the light is in resonance with spin excitations at sub-terahertz frequencies. In addition, we found that the magnetochiral effect, the absorption difference for the light beams propagating parallel and anti-parallel to the applied magnetic field, has an exceptionally large amplitude close to 100%. All these features are ascribed to the magnetoelectric nature of spin excitations as they interact both with the electric and magnetic components of light.



rate research

Read More

In this study, we examine the thermodynamics and spin dynamics of spin-1/2 and spin-3/2 heptamers. Through an exact diagonalization of the isotropic Heisenberg Hamiltonian, we find the closed-form, analytical representations for thermodynamic properties, spin excitations, and neutron scattering structure factors. Furthermore, we investigate the {cluster-like excitations of quantum spin heptamer} in the three-dimensional pyrochlore lattice material MgCr$_2$O$_4$. Using a spin mapping of the spin-1/2 heptamer excitations, the calculated structure factors of the spin-3/2 heptamer are be determined, which provides clarification for the spin excitations in MgCr$_2$O$_4$. Overall, this study demonstrates the ability to use the spin mapping of structure factors for small spin systems to analyze more complex structures.
We study Heisenberg model of classical spins lying on the toroidal support, whose internal and external radii are $r$ and $R$, respectively. The isotropic regime is characterized by a fractional soliton solution. Whenever the torus size is very large, $Rtoinfty$, its charge equals unity and the soliton effectively lies on an infinite cylinder. However, for R=0 the spherical geometry is recovered and we obtain that configuration and energy of a soliton lying on a sphere. Vortex-like configurations are also supported: in a ring torus ($R>r$) such excitations present no core where energy could blow up. At the limit $Rtoinfty$ we are effectively describing it on an infinite cylinder, where the spins appear to be practically parallel to each other, yielding no net energy. On the other hand, in a horn torus ($R=r$) a singular core takes place, while for $R<r$ (spindle torus) two such singularities appear. If $R$ is further diminished until vanish we recover vortex configuration on a sphere.
145 - C. Toulouse , L. Chaix , J. Liu 2014
We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling.
A quantum spin liquid (QSL) is an exotic state of matter in which electrons spins are quantum entangled over long distances, but do not show symmetry-breaking magnetic order in the zero-temperature limit. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. Here, we report neutron-scattering measurements on YbMgGaO4, a QSL candidate in which Yb3+ ions with effective spin-1/2 occupy a triangular lattice. Our measurements reveal a continuum of magnetic excitations - the essential experimental hallmark of a QSL - at very low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbor interactions do not yield a QSL ground state on the triangular lattice. Using measurements of the magnetic excitations close to the field-polarized state, we identify antiferromagnetic next-nearest-neighbor interactions in the presence of planar anisotropy as key ingredients for QSL formation in YbMgGaO4.
Anisotropic multiferroic properties of SrMnGe2O6 pyroxene single crystals were systematically investigated by means of magnetization, heat capacity, pyroelectric current measurement and elastic and inelastic neutron scattering experiments. Single crystal neutron diffraction allows us to unambiguously reveal the presence of two incommensurate magnetic orderings: a non-polar amplitude-modulated collinear sinusoidal magnetic structure emerges at TN1=4.36(2)K followed by a polar elliptical cycloidal spin structure below TN2=4.05(2)K. Pyroelectric current measurements on single crystal confirm the appearance of a spontaneous polarization within the (ac) plane below TN2 associated with the latter magnetic symmetry through extended Dzyaloshinsky-Moriya mechanism. The magnetic phase diagram was calculated considering the three isotropic exchange couplings relevant in this system. The magnetic excitations spectra of SrMnGe2O6 measured by inelastic neutron scattering were successfully modeled using a set of exchange interactions consistent with this phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا