Do you want to publish a course? Click here

Atmospheric Circulation and Composition of GJ1214b

157   0   0.0 ( 0 )
 Added by Kristen Menou
 Publication date 2011
  fields Physics
and research's language is English
 Authors Kristen Menou




Ask ChatGPT about the research

The exoplanet GJ1214b presents an interesting example of compositional degeneracy for low-mass planets. Its atmosphere may be composed of water, super-solar or solar metallicity material. We present atmospheric circulation models of GJ1214b for these three compositions, with explicit grey radiative transfer and an optional treatment of MHD bottom drag. All models develop strong, superrotating zonal winds (~ 1-2 km/s). The degree of eastward heat advection, which can be inferred from secondary eclipse and thermal phase curve measurements, varies greatly between the models. These differences are understood as resulting from variations in the radiative times at the thermal photosphere, caused by separate molecular weight and opacity effects. Our GJ1214b models illustrate how atmospheric circulation can be used as a probe of composition for similar tidally-locked exoplanets in the mini-Neptune/waterworld class.



rate research

Read More

GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets.
We present ALMA and VLA spatial maps of the Uranian atmosphere taken between 2015 and 2018 at wavelengths from 1.3 mm to 10 cm, probing pressures from $sim$1 to $sim$50 bar at spatial resolutions from 0.1 to 0.8. Radiative transfer modeling was performed to determine the physical origin of the brightness variations across Uranuss disk. The radio-dark equator and midlatitudes of the planet (south of $sim$50$^circ$ N) are well fit by a deep H$_2$S mixing ratio of $8.7_{-1.5}^{+3.1}times10^{-4}$ ($37_{-6}^{+13}times$ Solar) and a deep NH$_3$ mixing ratio of $1.7_{-0.4}^{+0.7}times10^{-4}$ ($1.4_{-0.3}^{+0.5}times$ Solar), in good agreement with literature models of Uranuss disk-averaged spectrum. The north polar region is very bright at all frequencies northward of $sim$50$^circ$N, which we attribute to strong depletions extending down to the NH$_4$SH layer in both NH$_3$ and H$_2$S relative to the equatorial region; the model is consistent with an NH$_3$ abundance of $4.7_{-1.8}^{+2.1} times 10^{-7}$ and an H$_2$S abundance of $<$$1.9times10^{-7}$ between $sim$20 and $sim$50 bar. Combining this observed depletion in condensible molecules with methane-sensitive near-infrared observations from the literature suggests large-scale downwelling in the north polar vortex region from $sim$0.1 to $sim$50 bar. The highest-resolution maps reveal zonal radio-dark and radio-bright bands at 20$^circ$S, 0$^circ$, and 20$^circ$N, as well as zonal banding within the north polar region. The difference in brightness is a factor of $sim$10 less pronounced in these bands than the difference between the north pole and equator, and additional observations are required to determine the temperature, composition and vertical extent of these features.
The hot-Jupiter HAT-P-2b has become a prime target for Spitzer Space Telescope observations aimed at understanding the atmospheric response of exoplanets on highly eccentric orbits. Here we present a suite of three-dimensional atmospheric circulation models for HAT-P-2b that investigate the effects of assumed atmospheric composition and rotation rate on global scale winds and thermal patterns. We compare and contrast atmospheric models for HAT-P-2b, which assume one and five times solar metallicity, both with and without TiO/VO as atmospheric constituents. Additionally we compare models that assume a rotation period of half, one, and two times the nominal pseudo-synchronous rotation period. We find that changes in assumed atmospheric metallicity and rotation rate do not significantly affect model predictions of the planetary flux as a function of orbital phase. However, models in which TiO/VO are present in the atmosphere develop a transient temperature inversion between the transit and secondary eclipse events that results in significant variations in the timing and magnitude of the peak of the planetary flux compared with models in which TiO/VO are omitted from the opacity tables. We find that no one single atmospheric model can reproduce the recently observed full orbit phase curves at 3.6, 4.5 and 8.0 microns, which is likely due to a chemical process not captured by our current atmospheric models for HAT-P-2b. Further modeling and observational efforts focused on understanding the chemistry of HAT-P-2bs atmosphere are needed and could provide key insights into the interplay between radiative, dynamical, and chemical processes in a wide range of exoplanet atmospheres.
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry site for a future in situ probe mission. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H$_2$ measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D simulations and by observations from future world-class facilities. [Abridged]
We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model grid recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough to be observed in transmission with high-resolution spectrographs, such as ESPRESSO on VLT, METIS on the E-ELT, or with MIRI and NIRSpec aboard JWST. We also compare theoretical emission spectra generated from our models to available Spitzer eclipse depths for each planet, and find that the outputs from our solar-metallicity, cloud-free models generally provide a good match to many of the datasets, even without additional model tuning. Although these models are cloud-free, we can use their results to understand the chemistry and dynamics that drive cloud formation in their atmospheres.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا