Do you want to publish a course? Click here

Audio mixing in a tri-port nano-electro-mechanical device

121   0   0.0 ( 0 )
 Added by Fabio Pistolesi
 Publication date 2011
  fields Physics
and research's language is English
 Authors M. Defoort




Ask ChatGPT about the research

We report on experiments performed on a cantilever-based tri-port nano-electro-mechanical (NEMS) device. Two ports are used for actuation and detection through the magnetomotive scheme, while the third port is a capacitively coupled gate electrode. By applying a low frequency voltage signal on the gate, we demonstrate mixing in the mechanical response of the device, even for {it low magnetomotive drives, without resorting to conduction measurements through the NEMS}. The technique can thus be used in particular in the linear regime, as an alternative to nonlinear mixing, for normal conducting devices. An analytic theory is presented reproducing the data without free parameters



rate research

Read More

218 - E. Collin , M. Defoort , K. Lulla 2015
We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port nano-electro-mechanical (NEMS) device. One port is a very non-linear capacitive actuation, while the two others implement the magnetomotive scheme with a linear input force port and a (quasi-linear) output velocity port. We present an experimental method enabling a full characterization of the nanomechanical device harmonic response: the non-linear capacitance function $C(x)$ is derived, and the normal parameters $k$ and $m$ (spring constant and mass) of the mode under study are measured through a careful definition of the motion (in meters) and of the applied forces (in Newtons). These results are obtained with a series of purely electric measurements performed without disconnecting/reconnecting the device, and rely only on known DC properties of the circuit, making use of a thermometric property of the oscillator itself: we use the Young modulus of the coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three connecting lines without any particular matching, enabling the preservation of a high impedance NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics. These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of elecromechanical devices.
We report on measurements performed at low temperatures on a nanoelectromechanical system (NEMS) under (capacitive) parametric pumping. The excitations and detection schemes are purely electrical, and enable in the present experiment the straightforward measurement of forces down to about a femtonewton, for displacements of an Angstrom, using standard room temperature electronics. We demonstrate that a small (linear) force applied on the device can be amplified up to more than a 100 times, while the system is {it truly moving}. We explore the dynamics up to about 50$~$nm deflections for cantilevers about 200$~$nm thick by 3$~$$mu$m long oscillating at a frequency of 7$~$MHz. We present a generic modeling of nonlinear parametric amplification, and give analytic theoretical solutions enabling the fit of experimental results. We finally discuss the practical limits of the technique, with a particular application: the measurement of {it anelastic damping} in the metallic coating of the device with an exceptional resolution of about 0.5$~$%.
We investigate electron shuttling in three-terminal nanoelectromechanocal device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limiting cycles, and (iv) single limiting cycle. In the presence of perpendicular magnetic field the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instability and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable emph{active} current switch and sensoring of small variations of magnetic field.
The combination of large per-photon optical force and small motional mass attainable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this work we study the optical control of mechanical motion within two different nanocavity structures, a zipper nanobeam photonic crystal cavity and a double-microdisk whispering-gallery resonator. The strong optical gradient force within these cavities is shown to introduce signifcant optical rigidity into the structure, with the dressed mechanical states renormalized into optically-bright and optically-dark modes of motion. With the addition of internal mechanical coupling between mechanical modes, a form of optically-controlled mechanical transparency is demonstrated in analogy to electromagnetically induced transparency of three-level atomic media. Based upon these measurements, a proposal for coherently transferring RF/microwave signals between the optical field and a long-lived dark mechanical state is described.
The response of a single InGaAs quantum dot, embedded in a miniaturized charge-tunable device, to an applied GHz bandwidth electrical pulse is investigated via its optical response. Quantum dot response times of 1.0 pm 0.1 ns are characterized via several different measurement techniques, demonstrating GHz bandwidth electrical control. Furthermore a novel optical detection technique based on resonant electron-hole pair generation in the hybridization region is used to map fully the voltage pulse experienced by the quantum dot, showing in this case a simple exponential rise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا