In this paper, a complete preprocessing methodology for discovering patterns in web usage mining process to improve the quality of data by reducing the quantity of data has been proposed. A dynamic ART1 neural network clustering algorithm to group users according to their Web access patterns with its neat architecture is also proposed. Several experiments are conducted and the results show the proposed methodology reduces the size of Web log files down to 73-82% of the initial size and the proposed ART1 algorithm is dynamic and learns relatively stable quality clusters.