Do you want to publish a course? Click here

Star-formation efficiency and metal enrichment of the intracluster medium in local massive clusters of galaxies

113   0   0.0 ( 0 )
 Added by Yu-Ying Zhang
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the baryon-mass content in a subsample of 19 clusters of galaxies extracted from the X-ray flux-limited sample HIFLUGCS according to their positions in the sky. For these clusters, we measured total masses and characteristic radii on the basis of a rich optical spectroscopic data set, the physical properties of the intracluster medium (ICM) using XMM-Newton and ROSAT X-ray data, and total (galaxy) stellar masses utilizing the SDSS DR7 multi-band imaging. The observed (hot) gas-mass fractions are almost constant in this mass range. We confirm that the stellar mass fraction decreases as the total mass increases and shows (20+/-4)% scatter; in addition, we show that it decreases as the central entropy increases. The latter behavior supports a twofold interpretation where heating from merging quenches the star-formation activity of galaxies in massive systems, and feedback from supernovae and/or radio galaxies drives a significant amount of gas to the regions beyond r_{500} or, alternatively, a substantially large amount of intracluster light (ICL) is associated with galaxies in nonrelaxed systems. Furthermore, less massive clusters are confirmed to host less gas per unit total mass; however, they exhibit higher mass fractions in metals, so that their ICM is more metal-rich. This again supports the interpretation that in the potential wells of low-mass systems the star-formation efficiency of galaxies was high or, alternatively, some gas is missing from the hot phase of the ICM. The former hypothesis is preferred as the main driver of the mass-dependent metal enrichment since the total mass-to-optical luminosity ratio increases as the total mass increases.



rate research

Read More

We investigate the metal enrichment of the intracluster medium (ICM) in the framework of hierarchical models of galaxy formation. We calculate the formation and evolution of galaxies and clusters using a semi-analytical model which includes the effects of flows of gas and metals both into and out of galaxies. For the first time in a semi-analytical model, we calculate the production of both alpha and iron-peak elements based on theoretical models for the lifetimes and ejecta of type Ia and type II supernovae (SNe Ia and SNe II). It is essential to include the long lifetimes of the SNIa progenitors in order to correctly model the evolution of the iron-peak elements. We find that if all stars form with an IMF similar to that found in the solar neighbourhood, then the metallicities of O, Mg, Si and Fe in the ICM are predicted to be 2-3 times lower than observed values. In contrast, a model (also favoured on other grounds) in which stars formed in bursts triggered by galaxy mergers have a top-heavy IMF reproduces the observed ICM abundances of O, Mg, Si and Fe. The same model predicts ratios of ICM mass to total stellar luminosity in clusters which agree well with observations. According to our model, the bulk of the metals in clusters are produced by L* and brighter galaxies. [abridged]
146 - A. Saintonge 2012
Using observations from the GASS and COLD GASS surveys and complementary data from SDSS and GALEX, we investigate the nature of variations in gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us to assess the relative importance of galaxy interactions, bar instabilities, morphologies and the presence of AGN in regulating star formation efficiency. Both the H2 mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence in the SFR-M* plane. The longest gas depletion times are found in below-main sequence bulge-dominated galaxies that are either gas-poor, or else on average less efficient than disk-dominated galaxy at converting into stars any cold gas they may have. We find no link between AGN and these long depletion times. The galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations, and the gas mass in high density star-forming cores, with interactions, mergers and bar instabilities able to locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas. Building a sample representative of the local massive galaxy population, we derive a global Kennicutt-Schmidt relation of slope 1.18+/-0.24, and observe structure within the scatter around this relation, with galaxies having low (high) stellar mass surface densities lying systematically above (below) the mean relation, suggesting that gas surface density is not the only parameter driving the global star formation ability of a galaxy.
110 - M. S. Bothwell 2009
We present a demographic analysis of integrated star formation and gas properties for a sample of galaxies representative of the overall population at z~0. This research was undertaken in order to characterise the nature of star formation and interstellar medium behaviour in the local universe, and test the extent to which global star formation rates can be seen as dependent on the interstellar gas content. Archival 21 cm derived HI data are compiled from the literature, and are combined with CO (J=1-0) derived H_2 masses to calculate and characterise the total gas content for a large sample of local galaxies. The distribution in stellar mass-normalised HI content is found to exhibit the noted characteristic transition at stellar masses of ~3x10^10 M_sun, turning off towards low values, but no such transition is observed in the equivalent distribution of molecular gas. H-alpha based star formation rates and specific star formation rates are also compiled for a large (1110) sample of local galaxies. We confirm two transitions as found in previous work: a turnover towards low SFRs at high luminosities, indicative of the quenching of SF characteristic of the red sequence; and a broadening of the SF distribution in low-luminosity dwarf galaxies, again to extremely low SFRs of < 0.001 M_sun/yr. However, a new finding is that while the upper luminosity transition is mirrored by the turn over in HI content, suggesting that the low SFRs of the red sequence result from a lack of available gas supply, the transition towards a large spread of SFRs in the least luminous dwarf galaxies is not matched by a prominent increase in scatter in gas content. Possible mass-dependent quenching mechanisms are discussed, along with speculations that in low mass galaxies, the H-alpha luminosity may not faithfully trace the SFR.
To determine the relative contributions of galactic and intracluster stars to the enrichment of the intracluster medium (ICM), we present X-ray surface brightness, temperature, and Fe abundance profiles for a set of twelve galaxy clusters for which we have extensive optical photometry. Assuming a standard IMF and simple chemical evolution model scaled to match the present-day cluster early-type SN Ia rate, the stars in the brightest cluster galaxy (BCG) plus the intracluster stars (ICS) generate 31^{+11}_{-9}%, on average, of the observed ICM Fe within r_{500} (~ 0.6 times r_{200}, the virial radius). An alternate, two-component SN Ia model (including both prompt and delayed detonations) produces a similar BCG+ICS contribution of 22^{+9}_{-9}%. Because the ICS typically contribute 80% of the BCG+ICS Fe, we conclude that the ICS are significant, yet often neglected, contributors to the ICM Fe within r_{500}. However, the BCG+ICS fall short of producing all the Fe, so metal loss from stars in other cluster galaxies must also contribute. By combining the enrichment from intracluster and galactic stars, we can account for all the observed Fe. These models require a galactic metal loss fraction (0.84^{+0.11}_{-0.14}) that, while large, is consistent with the metal mass not retained by galactic stars. The SN Ia rates, especially as a function of galaxy environment and redshift, remain a significant source of uncertainty in further constraining the metal loss fraction. For example, increasing the SN Ia rate by a factor of 1.8 -- to just within the 2 sigma uncertainty for present-day cluster early-type galaxies -- allows the combined BCG + ICS + cluster galaxy model to generate all the ICM Fe with a much lower galactic metal loss fraction (~ 0.35).
The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analyzing a sample of simulated galaxy clusters, we study the chemical enrichment of the ICM, its evolution, and its relation with the physical processes included in the simulation and with the thermal properties of the core. These simulations, consisting of re-simulations of 29 Lagrangian regions performed with an upgraded version of the SPH GADGET-3 code, have been run including two different sets of baryonic physics: one accounts for radiative cooling, star formation, metal enrichment and supernova (SN) feedback, and the other one further includes the effects of feedback from active galactic nuclei (AGN). In agreement with observations, we find an anti-correlation between entropy and metallicity in cluster cores, and similar radial distributions of heavy-element abundances and abundance ratios out to large cluster-centric distances (~R180). In the outskirts, namely outside of ~0.2R180, we find a remarkably homogeneous metallicity distribution, with almost flat profiles of the elements produced by either SNIa or SNII. We investigated the origin of this phenomenon and discovered that it is due to the widespread displacement of metal-rich gas by early (z>2-3) AGN powerful bursts, acting on small high-redshift haloes. Our results also indicate that the intrinsic metallicity of the hot gas for this sample is on average consistent with no evolution between z=2 and z=0, across the entire radial range.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا