We calculate joint moments of the characteristic polynomial of a random unitary matrix from the circular unitary ensemble and its derivative in the case that the power in the moments is an odd positive integer. The calculations are carried out for finite matrix size and in the limit as the size of the matrices goes to infinity. The latter asymptotic calculation allows us to prove a long-standing conjecture from random matrix theory.
We propose an algebraic method for proving estimates on moments of stochastic integrals. The method uses qualitative properties of roots of algebraic polynomials from certain general classes. As an application, we give a new proof of a variation of the Burkholder-Davis-Gundy inequality for the case of stochastic integrals with respect to real locally square integrable martingales. Further possible applications and extensions of the method are outlined.
We study the averaged products of characteristic polynomials for the Gaussian and Laguerre $beta$-ensembles with external source, and prove Pearcey-type phase transitions for particular full rank perturbations of source. The phases are characterised by determining the explicit functional forms of the scaled limits of the averaged products of characteristic polynomials, which are given as certain multidimensional integrals, with dimension equal to the number of products.
A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A; that is, G_n = transpose(A) A. The matrix G_n has characteristic roots coinciding with the singular values of A. Furthermore, the sequences det(G_i) and per(G_i) (for i = 0, 1, ..., n) are factors that comprise the expected coefficients of the characteristic and permanental polynomials of G_n. We prove theorems that relate the generating functions and recursions for the traces of matrix powers, expected characteristic coefficients, expected determinants E(det(G_n)), and expected permanents E(per(G_n)) in terms of each other. Using the derived recursions, we exhibit the efficient computation of the expected determinant and expected permanent of a random Gram matrix G_n, formed according to any underlying distribution. These theoretical results may be used both to speed up numerical algorithms and to investigate the numerical properties of the expected characteristic and permanental coefficients of any matrix comprised of independently sampled columns.
In this paper we shall use the boundary Schwarz lemma of Osserman to obtain some generalizations and refinements of some well known results concerning the maximum modulus of the polynomials with restricted zeros due to Turan, Dubinin and others.
The aim of the article is to understand the combinatorics of snake graphs by means of linear algebra. In particular, we apply Kasteleyns and Temperley--Fishers ideas about spectral properties of weighted adjacency matrices of planar bipartite graphs to snake graphs. First we focus on snake graphs whose set of turning vertices is monochromatic. We provide recursive sequences to compute the characteristic polynomials; they are indexed by the upper or the lower boundary of the graph and are determined by a neighbour count. As an application, we compute the characteristic polynomials for L-shaped snake graphs and staircases in terms of Fibonacci product polynomials. Next, we introduce a method to compute the characteristic polynomials as convergents of continued fractions. Finally, we show how to transform a snake graph with turning vertices of two colours into a graph with the same number of perfect matchings to which we can apply the results above.