We present images of 29 post-starburst quasars (PSQs) from a Hubble Space Telescope (emph{HST}) Advanced Camera for Surveys (ACS) Wide Field Channel Snapshot program. These broad-lined active galactic nuclei (AGN) possess the spectral signatures of massive ($M_{burst} sim 10^{10} M_{odot}$), moderate-aged stellar populations (hundreds of Myrs). Thus, their composite nature provides insight into the AGN-starburst connection. We measure quasar-to-host galaxy light contributions via semi-automated two-dimensional light profile fits of PSF-subtracted images. We examine the host morphologies, as well as, model the separate bulge and disk components. The emph{HST}/ACS-F606W images reveal an equal number of spiral (13/29) and early-type (13/29) hosts, with the remaining three hosts having indeterminate classifications. AGNs hosted by early-type galaxies have on average greater luminosity than those hosted by spiral galaxies. Disturbances, such as tidal tails, shells, star-forming knots, and asymmetries are seen as signposts of interaction/merger activity. Disturbances such as these were found in 17 of the 29 objects and are evenly distributed among early-type and spiral galaxies. Two of these systems are clearly merging with their companions. Compared to other AGN of similar luminosity and redshift these PSQs have a higher fraction of early-type hosts and disturbances. Our most luminous objects with disturbed early-type host galaxies appear to be consistent with merger products. Thus, these luminous disturbed galaxies may represent a phase in an evolutionary scenario for merger driven activity and of hierarchical galaxy evolution. Our less luminous objects appear to be consistent with Seyfert galaxies not requiring triggering by major mergers. Many of these Seyferts are barred spiral galaxies.