Do you want to publish a course? Click here

The ACS Survey of Galactic Globular Clusters XI: The Three-Dimensional Orientation of the Sagittarius Dwarf Spheroidal Galaxy and its Globular Clusters

149   0   0.0 ( 0 )
 Added by Michael H. Siegel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use observations from the ACS study of Galactic globular clusters to investigate the spatial distribution of the inner regions of the disrupting Sagittarius dwarf spheroidal galaxy (Sgr). We combine previously published analyses of four Sgr member clusters located near or in the Sgr core (M54, Arp 2, Terzan 7 and Terzan 8) with a new analysis of diffuse Sgr material identified in the background of five low-latitude Galactic bulge clusters (NGC 6624, 6637, 6652, 6681 and 6809) observed as part of the ACS survey. By comparing the bulge cluster CMDs to our previous analysis of the M54/Sgr core, we estimate distances to these background features. The combined data from four Sgr member clusters and five Sgr background features provides nine independent measures of the Sgr distance and, as a group, provide uniformly measured and calibrated probes of different parts of the inner regions of Sgr spanning twenty degrees over the face of the disrupting dwarf. This allows us, for the first time, to constrain the three dimensional orientation of Sgrs disrupting core and globular cluster system and compare that orientation to the predictions of an N-body model of tidal disruption. The density and distance of Sgr debris is consistent with models that favor a relatively high Sgr core mass and a slightly greater distance (28-30 kpc, with a mean of 29.4 kpc). Our analysis also suggests that M54 is in the foreground of Sgr by ~2 kpc, projected on the center of the Sgr dSph. While this would imply a remarkable alignment of the cluster and the Sgr nucleus along the line of sight, we can not identify any systematic effect in our analysis that would falsely create the measured 2 kpc separation. Finally, we find that the cluster Terzan 7 has the most discrepant distance (25 kpc) among the four Sgr core clusters, which may suggest a different dynamical history than the other Sgr core clusters.



rate research

Read More

Context. Globular clusters (GCs) are witnesses of the past accretion events onto the Milky Way (MW). In particular, the GCs of the Sagittarius (Sgr) dwarf galaxy are important probes of an on-going merger. Aims. Our main goal is to search for new GC members of this dwarf galaxy using the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared database combined with the Gaia Early Data Release 3 (EDR3) optical database. Methods. We investigated all VVVX-enabled discoveries of GC candidates in a region covering about 180 sq. deg. toward the bulge and the Sgr dwarf galaxy. We used multiband point-spread function photometry to obtain deep color-magnitude diagrams (CMDs) and luminosity functions (LFs) for all GC candidates, complemented by accurate Gaia-EDR3 proper motions (PMs) to select Sgr members and variability information to select RR Lyrae which are potential GC members. Results. After applying a strict PM cut to discard foreground bulge and disk stars, the CMDs and LFs for some of the GC candidates exhibit well defined red giant branches and red clump giant star peaks. We selected the best Sgr GCs, estimating their distances, reddenings, and associated RR Lyrae. Conclusions. We discover 12 new Sgr GC members, more than doubling the number of GCs known in this dwarf galaxy. In addition, there are 11 other GC candidates identified that are uncertain, awaiting better data for confirmation.
We use the fundamental-mode RR Lyr-type variable stars (RRab) from OGLE-IV survey to draw a 3D picture of the central part of the tidally disrupted Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy. We estimate the line-of-sight thickness of the Sgr dSph stream to be FWHM_cen=2.42 kpc. Based on OGLE-IV observations collected in seasons 2011-2014 we conduct a comprehensive study of stellar variability in the field of the globular cluster M54 (NGC 6715) residing in the core of this dwarf galaxy. Among the total number of 268 detected variable stars we report the identification of 174 RR Lyr stars, four Type II Cepheids, 51 semi-regular variable red giants, three SX Phe-type stars, 18 eclipsing binary systems. Eighty-three variable stars are new discoveries. The distance to the cluster determined from RRab stars is d_M54 = 26.7 +/-0.03(stat) +/-1.3(sys) kpc. From the location of RRab stars in the period-amplitude (Bailey) diagram we confirm the presence of two old populations, both in the cluster and the Sgr dSph stream.
We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, absorptions, and helium values for each cluster under the scenario of a single stellar population on model grids with solar ratio heavy element abundances. The set of cluster parameters is determined in a consistent and reproducible manner for all clusters using the Bayesian analysis suite BASE-9. Our results are used to re-visit the age-metallicity relation. We find correlations with helium and several other parameters such as metallicity, binary fraction, and proxies for cluster mass. The helium abundances of the clusters are also considered in the context of CNO abundances and the multiple population scenario.
Context. The Sagittarius (Sgr) dwarf galaxy is merging with the Milky Way, and the study of its globular clusters (GCs) is important to understand the history and outcome of this ongoing process. Aims. Our main goal is to characterize the GC system of the Sgr dwarf galaxy. This task is hampered by high foreground stellar contamination, mostly from the Galactic bulge. Methods. We performed a GC search specifically tailored to find new GC members within the main body of this dwarf galaxy using the combined data of the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared survey and the Gaia Early Data Release 3 (EDR3) optical database. Results. We applied proper motion (PM) cuts to discard foreground bulge and disk stars, and we found a number of GC candidates in the main body of the Sgr dwarf galaxy. We selected the best GCs as those objects that have significant overdensities above the stellar background of the Sgr galaxy and that possess color-magnitude diagrams (CMDs) with well-defined red giant branches (RGBs) consistent with the distance and reddening of this galaxy. Conclusions. We discover eight new GC members of the Sgr galaxy, which adds up to 29 total GCs known in this dwarf galaxy. This total number of GCs shows that the Sgr dwarf galaxy hosts a rather rich GC system. Most of the new GCs appear to be predominantly metal-rich and have low luminosity. In addition, we identify ten other GC candidates that are more uncertain and need more data for proper confirmation.
The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal poor Sgr dSph main body population. We derive a metallicity of [FeII/H]=-2.26+-0.10 for NGC 5053, and of [FeI/H]=-1.99+-0.075 and -1.97+-0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal poor globular clusters in the MW. Both clusters display an alpha enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. The chemistry of the Sgr dSph main body populations is similar to the one of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا