A derivation of the free-free emission on the Galactic plane between l=20 and 44 degrees


Abstract in English

We present the derivation of the free-free emission on the Galactic plane between l=20 and 44 degrees and |b| < 4 degrees, using Radio Recombination Line (RRL) data from the HI Parkes All-Sky Survey (HIPASS). Following an upgrade on the RRL data reduction technique, which improves significantly the quality of the final RRL spectra, we have extended the analysis to three times the area covered in Alves et al. (2010). The final RRL map has an angular resolution of 14.8 arcmin and a velocity resolution of 20 km/s. A map of the electron temperature (Te) of the ionised gas is derived for the area under study using the line and continuum data from the present survey. The mean Te on the Galactic plane is 6000 K. The first direct measure of the free-free emission is obtained based on the derived Te map. Subtraction of this thermal component from the total continuum leaves the first direct measure of the synchrotron emission at 1.4 GHz. A narrow component of width 2 degrees is identified in the latitude distribution of the synchrotron emission. We present a list of HII regions and SNRs extracted from the present free-free and synchrotron maps, where we confirm the synchrotron nature of three objects: G41.12-0.21, G41.15+0.39 and G35.59-0.44. We also identify a bright (42 Jy) new double radio galaxy, J1841-0152, previously unrecognised owing to the high optical extinction in the region. The latitude distribution for the RRL-derived free-free emission shows that the WMAP Maximum Entropy Method (MEM) is too high by ~ 50 per cent, in agreement with other recent results. The extension of this study to the inner Galaxy region l=-50 to 50 degrees will allow a better overall comparison of the RRL result with WMAP.

Download