Do you want to publish a course? Click here

Third homology of general linear groups over rings with many units

280   0   0.0 ( 0 )
 Added by Behrooz Mirzaii
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

For a commutative ring R with many units, we describe the kernel of H_3(inc): H_3(GL_2(R), Z) --> H_3(GL_3(R), Z). Moreover we show that the elements of this kernel are of order at most two. As an application we study the indecomposable part of K_3(R).



rate research

Read More

170 - Behrooz Mirzaii 2020
For an infinite field $F$, we study the cokernel of the map of homology groups $H_{n+1}(mathrm{GL}_{n-1}(F),mathbb{k}) to H_{n+1}(mathrm{GL}_{n}(F),mathbb{k})$, where $mathbb{k}$ is a field such that $(n-2)!in mathbb{k}^times$, and the kernel of the natural map $H_{n}big(mathrm{GL}_{n-1}(F),mathbb{Z}big[frac{1}{(n-2)!} big] big) to H_{n}big(mathrm{GL}_{n}(F),mathbb{Z}big[frac{1}{(n-2)!} big]big)$. We give conjectural estimates of these cokernel and kernel and prove our conjectures for $nleq 4$.
In this article we prove a generalization of the Bloch-Wigner exact sequence over commutative rings with many units. When the ring is a domain, we get a generalization of Suslins Bloch-Wigner exact sequence over infinite fields. Our proof is different and is easier, even in its general form. But nevertheless we use some of Suslins results which relates the Bloch group of the ring to the third homology group of the general linear group of the ring. From there we take an easier path.
We study five different types of the homology of a Lie algebra over a commutative ring which are naturally isomorphic over fields. We show that they are not isomorphic over commutative rings, even over $mathbb Z,$ and study connections between them. In particular, we show that they are naturally isomorphic in the case of a Lie algebra which is flat as a module. As an auxiliary result we prove that the Koszul complex of a module $M$ over a principal ideal domain that connects the exterior and the symmetric powers $0to Lambda^n Mto M otimes Lambda^{n-1} M to dots to S^{n-1}M otimes M to S^nMto 0 $ is purely acyclic.
129 - Tyrone Crisp , Ehud Meir , Uri Onn 2017
We construct, for any finite commutative ring $R$, a family of representations of the general linear group $mathrm{GL}_n(R)$ whose intertwining properties mirror those of the principal series for $mathrm{GL}_n$ over a finite field.
For a central perfect extension of groups $A rightarrowtail G twoheadrightarrow Q$, we study the maps $H_3(A,mathbb{Z}) to H_3(G, mathbb{Z})$ and $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$ provided that $Asubseteq G$. First we show that the image of $H_3(A, mathbb{Z})to H_3(G, mathbb{Z})/rho_ast(Aotimes_mathbb{Z} H_2(G, mathbb{Z}))$ is $2$-torsion where $rho: A times G to G$ is the usual product map. When $BQ^+$ is an $H$-space, we also study the kernel of the surjective homomorphism $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا