No Arabic abstract
In three dimensions, non-interacting bosons undergo Bose-Einstein condensation at a critical temperature, $T_{c}$, which is slightly shifted by $Delta T_{mathrm{c}}$, if the particles interact. We calculate the excitation spectrum of interacting Bose-systems, sup{4}He and sup{87}Rb, and show that a roton minimum emerges in the spectrum above a threshold value of the gas parameter. We provide a general theoretical argument for why the roton minimum and the maximal upward critical temperature shift are related. We also suggest two experimental avenues to observe rotons in condensates. These results, based upon a Path-Integral Monte-Carlo approach, provide a microscopic explanation of the shift in the critical temperature and also show that a roton minimum does emerge in the excitation spectrum of particles with a structureless, short-range, two-body interaction.
We show how density dependent gauge potentials can be induced in dilute gases of ultracold atoms using light-matter interactions. We study the effect of the resulting interacting gauge theory and show how it gives rise to novel topological states in the ultracold gas. We find in particular that the onset of persistent currents in a ring geometry is governed by a critical number of particles. The density-dependent gauge potential is also found to support chiral solitons in a quasi-one-dimensional ultracold Bose gas.
The dynamics of strongly interacting many-body quantum systems are notoriously complex and difficult to simulate. A new theory, generalized hydrodynamics (GHD), promises to efficiently accomplish such simulations for nearly-integrable systems. It predicts the evolution of the distribution of rapidities, which are the momenta of the quasiparticles in integrable systems. GHD was recently tested experimentally for weakly interacting atoms, but its applicability to strongly interacting systems has not been experimentally established. Here we test GHD with bundles of one-dimensional (1D) Bose gases by performing large trap quenches in both the strong and intermediate coupling regimes. We measure the evolving distribution of rapidities, and find that theory and experiment agree well over dozens of trap oscillations, for average dimensionless coupling strengths that range from 0.3 to 9.3. By also measuring momentum distributions, we gain experimental access to the interaction energy and thus to how the quasiparticles themselves evolve. The accuracy of GHD demonstrated here confirms its wide applicability to the simulation of nearly-integrable quantum dynamical systems. Future experimental studies are needed to explore GHD in spin chains, as well as the crossover between GHD and regular hydrodynamics in the presence of stronger integrability breaking perturbations.
We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes. A wide range of the two-body interaction strength 0.05 < g < 3 is covered by tuning the scattering length and by loading the sample into an optical lattice. Based on the equations of state measurements, we extract the coupling constants as well as critical thermodynamic quantities in different regimes. In the superfluid and the BKT transition regimes, the extracted coupling constants show significant down-shifts from the mean-field and perturbation calculations when g approaches or exceeds one. In the BKT and the quantum critical regimes, all measured thermodynamic quantities show logarithmic dependence on the interaction strength, a tendency confirmed by the extended classical-field and renormalization calculations.
We investigate the dispersion of a classical electromagnetic field in a relativistic ideal gas of charged bosons using scalar quantum electrodynamics at finite temperature and charge density. We derive the effective electromagnetic responses and the electromagnetic propagation modes that characterize the gas as a left-handed material with negative effective index of refraction $n_{rm eff}=-1$ below the transverse plasmon frequency. In the condensed phase, we show that the longitudinal plasmon dispersion relation exhibits a roton-type local minimum that disappears at the transition temperature.
Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.