The cross-plane thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is measured from 13 K to 300 K using the 3{omega} method. Thermal conductivity is reduced by up to 2 orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1-8 W/mcdotK may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL quantum cascade lasers and high power light emitting diodes. We introduce a power-law approximation to model non-linearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively.