Do you want to publish a course? Click here

Multi-Epoch Observations of HD69830: High Resolution Spectroscopy and Limits to Variability

185   0   0.0 ( 0 )
 Added by Chas Beichman
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main-sequence solar-type star HD69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5-7% (1 $sigma$ per spectral element) on the variability of the {it dust spectrum} over 1 year, 3.3% (1 $sigma$) on the broad-band disk emission over 4 years, and 33% (1 $sigma$) on the broad-band disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher SNR spectra do not confirm our previously claimed detection of H$_2$O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a $sim$ 1 AU location for the emitting material.



rate research

Read More

We perform a systematic search for high-redshift ($z >$ 1.5) extreme variability quasars (EVQs) using repeat spectra from the Sixteenth Data Release of Sloan Digital Sky Survey, which provides a baseline spanning up to $sim$18 yrs in the observed frame. We compile a sample of 348 EVQs with a maximum continuum variability at rest frame 1450 Angstrom of more than 100% (i.e., $delta$V $equiv$ (Max$-$Min)/Mean $>$1). The EVQs show a range of emission line variability, including 23 where at least one line in our redshift range disappears below detectability, which can then be seen as analogous to low-redshift changing-look quasars (CLQs). Importantly, spurious CLQs caused by SDSS problematic spectral flux calibration, e.g., fiber drop issue, have been rejected. The similar properties (e.g., continuum/line, difference-composite spectra and Eddington ratio) of normal EVQs and CLQs, implies that they are basically the same physical population with analogous intrinsic variability mechanisms, as a tail of a continuous distribution of normal quasar properties. In addition, we find no reliable evidence ($lesssim$ 1$sigma$) to support that the CLQs are a subset of EVQs with less efficient accretion. Finally, we also confirm the anti-breathing of C IV (i.e., line width increases as luminosity increases) in EVQs, and find that in addition to $sim$ 0.4 dex systematic uncertainty in single-epoch C IV virial black hole mass estimates, an extra scatter of $sim$ 0.3 dex will be introduced by extreme variability.
This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the cases, when distance and epoch of discovery do not allow a direct approach. To study the circumstellar environment of SN2011fe we have obtained high-resolution spectroscopy of SN2011fe on 12 epochs, from 8 to 86 days after the estimated date of explosion, targeting in particular at the time evolution of CaII and NaI. Three main absorption systems are identified from CaII and NaI, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The Galactic and host galaxy reddening, deduced from the integrated equivalent widths (EW) of the NaI lines are E(B-V)=0.011+/-0.002 and E(B-V)=0.014+/-0.002 mag, respectively. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm HI line at the projected SN position (~180 km/s). During the ~3 months covered by our observations, its EW changed by 15.6+/-6.5 mA. This small variation is shown to be compatible with the geometric effects produced by therapid SN photosphere expansion coupled to the patchy fractal structure of the ISM. The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales <100 AU. SN2011fe appears to be surrounded by a clean environment. The lack of blue-shifted, time-variant absorption features is fully consistent with the progenitor being a binary system with a main-sequence, or even another degenerate star.
116 - Gergely Csepany 2017
Context. In multiple pre-main-sequence systems the lifetime of circumstellar disks appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims. We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine if the components are gravitationally bound and orbital motion is visible, derive orbital parameters and investigate possible correlations between the binary parameters and disk states. Methods. We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding $16 + 2times2=20$ binary pairs) in the Taurus-Auriga star forming region from the survey by Leinert et al. (1993), with spectral types from K1 to M5 and separations from 0.22 (31 AU) to 5.8 (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results. We found ten pairs to orbit each other, five pairs that may show orbital motion and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 $mu$m infra-red excess varies between 0.1 and 7.2 magnitudes (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disk. Conclusions. We have detected orbital motion in young T Tauri systems over a timescale of $approx20$ years. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.
189 - Luke Finnerty 2020
While high-resolution cross-correlation spectroscopy (HRCCS) techniques have proven effective at characterizing the atmospheres of transiting and non-transiting hot Jupiters, the limitations of these techniques are not well understood. We present a series of simulations of one HRCCS technique, which combines the cross-correlation functions from multiple epochs, to place temperature and contrast limits on the accessible exoplanet population for the first time. We find that planets approximately Saturn-size and larger within $sim$0.2 AU of a Sun-like star are likely to be detectable with current instrumentation in the $L$-band, a significant expansion compared with the previously-studied population. Cooler ($ rm T_{eq} leq 1000$ K) exoplanets are more detectable than suggested by their photometric contrast alone as a result of chemical changes which increase spectroscopic contrast. The $L$-band CH$_4$ spectrum of cooler exoplanets enables robust constraints on the atmospheric C/O ratio at $rm T_{eq} sim 900K$, which have proven difficult to obtain for hot Jupiters. These results suggest that the multi-epoch approach to HRCCS can detect and characterize exoplanet atmospheres throughout the inner regions of Sun-like systems with existing high-resolution spectrographs. We find that many epochs of modest signal-to-noise ($rm S/N_{epoch} sim 1500$) yield the clearest detections and constraints on C/O, emphasizing the need for high-precision near-infrared telluric correction with short integration times.
One of the main questions concerning Type Ia supernovae is the nature of the binary companion of the exploding white dwarf. A major discriminant between different suggested models is the presence and physical properties of circumstellar material at the time of explosion. If present, this material will be ionized by the ultra-violet radiation of the explosion and later recombine. This ionization-recombination should manifest itself as time-variable absorption features that can be detected via multi-epoch high-spectral-resolution observations. Previous studies have shown that the strongest effect is seen in the neutral sodium D lines. We report on observations of neutral sodium absorption features observed in multi-epoch high-resolution spectra of 14 Type Ia supernova events. This is the first multi-epoch high-resolution study to include multiple SNe. No variability in line strength that can be associated with circumstellar material is detected. We find that ~18% of the events in the extended sample exhibit time-variable sodium features associated with circumstellar material. We explore the implication of this study on our understanding of the progenitor systems of Type Ia supernovae via the current Type Ia supernova multi-epoch high-spectral-resolution sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا