No Arabic abstract
We present evidence for a concomitant structural and ferroelectric transformation around $T_Ssim 360$ K in multiferroic BiFeO$_3$/LaAlO$_3$ thin films close to the tetragonal phase. Phonon excitations are investigated by using Raman scattering as a function of temperature. The low-energy phonon modes at 180-260 cm$^{-1}$ related to the FeO$_6$ octahedron tilting show anomalous behaviors upon cooling through $T_S$; (i) a large hardening amounting to 15 cm$^{-1}$, (ii) an increase of intensity by one order of magnitude, and (iii) an appearance of a dozen new modes. In contrast, the high-frequency modes exhibit only weak anomalies. This suggests an intimate coupling of octahedron tilting to ferroelectricity leading to a simultaneous change of structural and ferroelectric properties.
We have investigated the nanoscale switching properties of strain-engineered BiFeO3 thin films deposited on LaAlO3 substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicate that the nearly-tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy we provide clear evidence of ferroelectric switching of the tetragonal phase but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically-driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material which is promising for a plethora of applications.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
Raman scattering measurements on BiFeO3 single crystals show an important coupling between the magnetic order and lattice vibrations. The temperature evolution of phonons shows that the lowest energy E and A1 phonon modes are coupled to the spin order up to the Neel temperature. Furthermore, low temperature anomalies associated with the spin re-orientation are observed simultaneously in both the E phonon and the magnon. These results suggest that magnetostriction plays an important role in BiFeO3.
In this work we report on the controlled fabrication of a self-assembled line network in highly epitaxial BiFeO3 thin films on top of LaAlO3 in the kinetically limited grown region by RF sputtering. As previously shown in the case of manganite thin films, the remarkable degree of ordering is achieved using vicinal substrates with well-defined step-terrace morphology. Nanostructured BiFeO3 thin films show mixed-phase morphology. Besides typical formation following (100) and (010) axes, some mixed phase nanodomains are detected also in-between the regular line network. These particular microstructures open a playground for future applications in multiferroic nanomaterials.
We report on the functionalization of multiferroic BiFeO3 epitaxial films for spintronics. A first example is provided by the use of ultrathin layers of BiFeO3 as tunnel barriers in magnetic tunnel junctions with La2/3Sr1/3MnO3 and Co electrodes. In such structures, a positive tunnel magnetoresistance up to 30% is obtained at low temperature. A second example is the exploitation of the antiferromagnetic spin structure of a BiFeO3 film to induce a sizeable (~60 Oe) exchange bias on a ferromagnetic film of CoFeB, at room temperature. Remarkably, the exchange bias effect is robust upon magnetic field cycling, with no indications of training.