New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements


Abstract in English

The unusual electrical and optical properties of graphene make it a promising candidate for optoelectronic applications. An important, but as yet unexplored aspect is the role of photo-excited hot carriers in charge and energy transport at graphene interfaces. Here, we perform time-resolved (~250 fs) scanning photocurrent microscopy on a tunable graphene pn junction. The ultrafast pump-probe measurements yield a photocurrent response time of ~1.5 ps at room temperature increasing to ~4 ps at 20 K. Combined with the negligible dependence of photocurrent amplitude on environmental temperature this implies that hot carriers rather than phonons dominate energy transport at high frequencies. Gate-dependent pump-probe measurements demonstrate that both thermoelectric and built-in electric field effects contribute to the photocurrent excited by laser pulses. The relative weight of each contribution depends on the junction configuration. A single laser beam excitation also displays multiple polarity-reversals as a function of carrier density, a signature of impact ionization. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (~500 GHz) for potential graphene-based photon detection, sensing, and communication.

Download