No Arabic abstract
Dissipative processes in physics are usually associated with non-unitary actions. However, the important resource of entanglement is not invariant under general unitary transformations, and is thus susceptible to unitary dissipation. In this note we discuss both unitary and non-unitary dissipative processes, showing that the former is ultimately of value, since reversible, and enables the production of entanglement; while even in the presence of the latter, more conventional non-unitary and non-reversible, process there exist nonetheless invariant entangled states.
We propose a physical realization of quantum cellular automata (QCA) using arrays of ultracold atoms excited to Rydberg states. The key ingredient is the use of programmable multifrequency couplings which generalize the Rydberg blockade and facilitation effects to a broader set of non-additive, unitary and non-unitary (dissipative) conditional interactions. Focusing on a 1D array we define a set of elementary QCA rules that generate complex and varied quantum dynamical behavior. Finally we demonstrate theoretically that Rydberg QCA is ideally suited for variational quantum optimization protocols and quantum state engineering by finding parameters that generate highly entangled states as the steady state of the quantum dynamics.
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
We outline an extension of the classical Langevin equation to a quantum formulation of the treatment of dissipation and fluctuations of all collective degrees of freedom with unitary evolution of a many-fermion system within an extension of the time-dependent density functional theory. We illustrate the method by computing the distribution of fission fragment yields for $^{258}$Fm in a quantum hydrodynamic approach and a typical trajectory with full unrestricted density functional theory augmented with dissipation and fluctuations.
Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called entanglement-CUT or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators. We also present proof-of-principle results for the spin-1/2 1d quantum Ising model and the 3-state quantum Potts model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermodynamic limit.
Starting from a state of low quantum entanglement, local unitary time evolution increases the entanglement of a quantum many-body system. In contrast, local projective measurements disentangle degrees of freedom and decrease entanglement. We study the interplay of these competing tendencies by considering time evolution combining both unitary and projective dynamics. We begin by constructing a toy model of Bell pair dynamics which demonstrates that measurements can keep a system in a state of low (i.e. area law) entanglement, in contrast with the volume law entanglement produced by generic pure unitary time evolution. While the simplest Bell pair model has area law entanglement for any measurement rate, as seen in certain non-interacting systems, we show that more generic models of entanglement can feature an area-to-volume law transition at a critical value of the measurement rate, in agreement with recent numerical investigations. As a concrete example of these ideas, we analytically investigate Clifford evolution in qubit systems which can exhibit an entanglement transition. We are able to identify stabilizer size distributions characterizing the area law, volume law and critical fixed points. We also discuss Floquet random circuits, where the answers depend on the order of limits - one order of limits yields area law entanglement for any non-zero measurement rate, whereas a different order of limits allows for an area law - volume law transition. Finally, we provide a rigorous argument that a system subjected to projective measurements can only exhibit a volume law entanglement entropy if it also features a subleading correction term, which provides a universal signature of projective dynamics in the high-entanglement phase. Note: The results presented here supersede those of all previou