No Arabic abstract
Fermionic 87Sr has a nuclear spin of I=9/2, higher than any other element with similar electronic structure. This large nuclear spin has many applications in quantum simulation and computation, for which preparation and detection of the spin state are requirements. For an ultracold 87Sr cloud, we show two complementary methods to characterize the spin-state mixture: optical Stern-Gerlach state separation and state-selective absorption imaging. We use these methods to optimize the preparation of a variety of spin-state mixtures by optical pumping and to measure an upper bound of the 87Sr spin relaxation rate.
The combination of interactions and static gauge fields plays a pivotal role in our understanding of strongly-correlated quantum matter. Cold atomic gases endowed with a synthetic dimension are emerging as an ideal platform to experimentally address this interplay in quasi-one-dimensional systems. A fundamental question is whether these setups can give access to pristine two-dimensional phenomena, such as the fractional quantum Hall effect, and how. We show that unambiguous signatures of bosonic and fermionic Laughlin-like states can be observed and characterized in synthetic ladders. We theoretically diagnose these Laughlin-like states focusing on the chiral current flowing in the ladder, on the central charge of the low-energy theory, and on the properties of the entanglement entropy. Remarkably, Laughlin-like states are separated from conventional liquids by Lifschitz-type transitions, characterized by sharp discontinuities in the current profiles, which we address using extensive simulations based on matrix-product states. Our work provides a qualitative and quantitative guideline towards the observability and understanding of strongly-correlated states of matter in synthetic ladders. In particular, we unveil how state-of-the-art experimental settings constitute an ideal starting point to progressively tackle two-dimensional strongly interacting systems from a ladder viewpoint, opening a new perspective for the observation of non-Abelian states of matter.
We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution textit{in situ} imaging. This novel technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at arbitrary wave vector, in particular the staggered structure factor. From a measurement along the diagonal of the $1^mathrm{st}$ Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer for the spin temperature, which we employ to study the thermalization of spin and density degrees of freedom during a slow quench of the lattice depth.
Elementary particles such as the electron carry several quantum numbers, for example, charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. Paradigmatic examples of this phenomenon are one-dimensional systems described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here we report on the dynamical deconfinement of spin and charge excitations in real space following the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we track the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multi-point correlators, we quantify the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.
We report the observation and manipulation of heteronuclear spin dynamics in a spin-1 mixture of ultracold $^{87}$Rb and $^{23}$Na atoms. The dynamics is driven by the interspecies spin-dependent interaction and shows a pronounced dependence on magnetic fields with influences from both linear and quadratic Zeeman shifts. Similar to the well-studied homonuclear cases, the interspecies spin dynamics can be controlled by tuning the quadratic Zeeman shift with far-detuned microwave fields. In addition, we successfully realize spin dynamics control with vector light shifts which act as a species-selective effective magnetic field on $^{87}$Rb atoms. Both methods show negligible loss of atoms thus will be powerful techniques for investigating spin dynamics with fast temporal and high spatial resolutions.
We study pseudogap behaviors of ultracold Fermi gases in the BCS-BEC crossover region. We calculate the density of states (DOS), as well as the single-particle spectral weight, above the superfluid transition temperature $T_{rm c}$ including pairing fluctuations within a $T$-matrix approximation. We find that DOS exhibits a pseudogap structure in the BCS-BEC crossover region, which is most remarkable near the unitarity limit. We determine the pseudogap temperature $T^*$ at which the pseudogap structure in DOS disappears. We also introduce another temperature $T^{**}$ at which the BCS-like double-peak structure disappears in the spectral weight. While one finds $T^*>T^{**}$ in the BCS regime, $T^{**}$ becomes higher than $T^*$ in the crossover and BEC regime. We also determine the pseudogap region in the phase diagram in terms of temperature and pairing interaction.