We demonstrate coherent control and measurement of a superconducting qubit coupled to a superconducting coplanar waveguide resonator with a dynamically tunable qubit-cavity coupling strength. Rabi oscillations are measured for several coupling strengths showing that the qubit transition can be turned off by a factor of more than 1500. We show how the qubit can still be accessed in the off state via fast flux pulses. We perform pulse delay measurements with synchronized fast flux pulses on the device and observe $T_1$ and $T_2$ times of 1.6 and 1.9 $mu$s, respectively. This work demonstrates how this qubit can be incorporated into quantum computing architectures.
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped element resonator. The coupling strength is mediated by a flux-biased RF SQUID operated in the non-hysteretic regime. By tuning the applied flux bias to the RF SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and resonator . We verify the modulation of coupling strength from 0 to $100 MHz$ by observing modulation in the size of the splitting in the phase qubits spectroscopy, as well as coherently by observing modulation in the vacuum Rabi oscillation frequency when on resonance. The measured spectroscopic splittings and vacuum Rabi oscillations agree well with theoretical predictions.
We experimentally demonstrate the coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable via the amplitude of the flux pulse. The demonstrated operation mode allows to realize quantum gates which take less than 100 ps time and are thus much faster compared to other superconducting qubits. An other advantage of this type of qubit is its insensitivity to both thermal and magnetic field fluctuations.
We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable coupling strength g. We show that this coupling strength can be tuned from zero to values that are comparable with other superconducting qubits. At g = 0 the qubit is in a decoherence free subspace with respect to spontaneous emission induced by the Purcell effect. Furthermore we show that in the decoherence free subspace the state of the qubit can still be measured by either a dispersive shift on the resonance frequency of the resonator or by a cycling-type measurement.
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent losses were take into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
We demonstrate amplification of a microwave signal by a strongly driven two-level system in a coplanar waveguide resonator. The effect known from optics as dressed-state lasing is observed with a single quantum system formed by a persistent current (flux) qubit. The transmission through the resonator is enhanced when the Rabi frequency of the driven qubit is tuned into resonance with one of the resonator modes. Amplification as well as linewidth narrowing of a weak probe signal has been observed. The laser emission at the resonators fundamental mode has been studied by measuring the emission spectrum. We analyzed our system and found an excellent agreement between the experimental results and the theoretical predictions obtained in the dressed-state model.
Anthony J. Hoffman
,Srikanth J. Srinivasan
,Jay M. Gambetta andn Andrew A. Houck
.
(2011)
.
"Coherent Control of a Superconducting Qubit with Dynamically Tunable Qubit-cavity Coupling"
.
Anthony Hoffman
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا