Do you want to publish a course? Click here

Characterization of Seven Ultra-Wide Trans-Neptunian Binaries

103   0   0.0 ( 0 )
 Added by Alex Parker
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely-separated binaries. These systems are similar to other Trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH69, e=0.9) and the most widely-separated, weakly bound (2001 QW322, a/Rh~0.22) binary minor planets known, and also contains the system with lowest-measured mass of any TNB (2000 CF105, M~1.85E17 kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce a similar orbital distribution to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.



rate research

Read More

The discovery and characteristics of transneptunian binaries are reviewed. In the 20 years since their first discovery, a wealth of detail has emerged including the frequency of binaries in different populations, their relative sizes and separations, and colors. Taken globally, these properties give strong clues to the origin and evolution of the populations where these binaries are found. In the last ten years and increasing number of binary orbits have been determined which yields a new trove of information on their masses and densities as well as details of their orbits including inclination, eccentricity and the timing of mutual events. In 2018, the study of transneptunian binaries remains one of the most active areas of progress in understanding the Solar System beyond Neptune.
115 - S. I. Ipatov 2018
The dependences of inclinations of orbits of secondaries in the discovered trans-Neptunian binaries on the distance between the primary and the secondary, on the eccentricity of orbits of the secondary around the primary, on the ratio of diameters of the secondary and the primary, and on the elements of heliocentric orbits of these binaries are studied. These dependences are interpreted using the model of formation of a satellite system in a collision of two rarefied condensations composed of dust and/or objects less than 1 m in diameter. It is assumed in this model that a satellite system forms in the process of compression of a condensation produced in such a collision. The model of formation of a satellite system in a collision of two condensations agrees with the results of observations: according to observational data, approximately 40% of trans-Neptunian binaries have a negative angular momentum relative to their centers of mass.
A critical step toward the emergence of planets in a protoplanetary disk consists in accretion of planetesimals, bodies 1-1000 km in size, from smaller disk constituents. This process is poorly understood partly because we lack good observational constraints on the complex physical processes that contribute to planetesimal formation. In the outer solar system, the best place to look for clues is the Kuiper belt, where icy planetesimals survived to this day. Here we report evidence that Kuiper belt planetesimals formed by the streaming instability, a process in which aerodynamically concentrated clumps of pebbles gravitationally collapse into 100-km-class bodies. Gravitational collapse was previously suggested to explain the ubiquity of equal-size binaries in the Kuiper belt. We analyze new hydrodynamical simulations of the streaming instability to determine the model expectations for the spatial orientation of binary orbits. The predicted broad inclination distribution with 80% of prograde binary orbits matches the observations of trans-Neptunian binaries. The formation models which imply predominantly retrograde binary orbits can be ruled out. Given its applicability over a broad range of protoplanetary disk conditions, it is expected that the streaming instability seeded planetesimal formation also elsewhere in the solar system, and beyond.
Digital co-addition of astronomical images is a common technique for increasing signal-to-noise and image depth. A modification of this simple technique has been applied to the detection of minor bodies in the Solar System: first stationary objects are removed through the subtraction of a high-SN template image, then the sky motion of the Solar System bodies of interest is predicted and compensated for by shifting pixels in software prior to the co-addition step. This shift-and-stack approach has been applied with great success in directed surveys for minor Solar System bodies. In these surveys, the shifts have been parameterized in a variety of ways. However, these parameterizations have not been optimized and in most cases cannot be effectively applied to data sets with long observation arcs due to objects real trajectories diverging from linear tracks on the sky. This paper presents two novel probabilistic approaches for determining a near-optimum set of shift-vectors to apply to any image set given a desired region of orbital space to search. The first method is designed for short observational arcs, and the second for observational arcs long enough to require non-linear shift-vectors. Using these techniques and other optimizations, we derive optimized grids for previous surveys that have used shift-and-stack approaches to illustrate the improvements that can be made with our method, and at the same time derive new limits on the range of orbital parameters these surveys searched. We conclude with a simulation of a future applications for this approach with LSST, and show that combining multiple nights of data from such next-generation facilities is within the realm of computational feasibility.
Context: Accurate measurements of diameters of trans-Neptunian objects are extremely complicated to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, Hv, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, yet not many are known. Aims: Our objective is to measure accurate V band absolute magnitudes and phase coefficients for a sample of trans-Neptunian objects, many of which have been observed, and modeled, within the TNOs are cool program, one of Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of them with no reported previous measurements. Including the data from the literature we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of Hv is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. In the case of the phase coefficients we report 0.10 mag per degree as the median value and a very large dispersion, ranging from -0.88 up tp 1.35 mag per degree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا