Using scanning micro X-ray diffraction we report a mixed real and reciprocal space visualization of the spatial heterogeneity of the lattice incommensurate supermodulation in single crystal of Bi2Sr2CaCu2O8+y with Tc=84 K. The mapping shows an amplitude distribution of the supermodulation with large lattice fluctuations at microscale with about 50% amplitude variation. The angular distribution of the supermodulation amplitude in the a-b plane shows a lattice chiral symmetry, forming a left-handed oriented striped pattern. The spatial correlation of the supermodulation is well described by a compressed exponential with an exponent of 1.5 and a correlation length of about 50 {mu}m, showing the intrinsic lattice disorder in high temperature superconductors.
The spin dynamics of an optimally doped YBa2Cu3O7 (Tc = 93 K) crystal array have been investigated in a wide range of momentum and energy (Q - E) space using the time-of-flight neutron scattering method. Incommensurate spin modulation in Q is a characteristic feature, as it is in the under-doped YBa2Cu3O6.7 with a different incommensurability. A linear relationship between the incommensurability and Tc is proposed. Along with the discovery of the same incommensurability in under-doped La2-ySryCuO4, it may be a generic characteristic of the high-Tc oxide superconductor.
Electronic functionalities in materials from silicon to transition metal oxides are to a large extent controlled by defects and their relative arrangement. Outstanding examples are the oxides of copper, where defect order is correlated with their high superconducting transition temperatures. The oxygen defect order can be highly inhomogeneous, even in optimal superconducting samples, which raises the question of the nature of the sample regions where the order does not exist but which nonetheless form the glue binding the ordered regions together. Here we use scanning X-ray microdiffraction (with beam 300 nm in diameter) to show that for La2CuO4+y, the glue regions contain incommensurate modulated local lattice distortions, whose spatial extent is most pronounced for the best superconducting samples. For an underdoped single crystal with mobile oxygen interstitials in the spacer La2O2+y layers intercalated between the CuO2 layers, the incommensurate modulated local lattice distortions form droplets anticorrelated with the ordered oxygen interstitials, and whose spatial extent is most pronounced for the best superconducting samples. In this simplest of high temperature superconductors, there are therefore not one, but two networks of ordered defects which can be tuned to achieve optimal superconductivity. For a given stoichiometry, the highest transition temperature is obtained when both the ordered oxygen and lattice defects form fractal patterns, as opposed to appearing in isolated spots. We speculate that the relationship between material complexity and superconducting transition temperature Tc is actually underpinned by a fundamental relation between Tc and the distribution of ordered defect networks supported by the materials.
Super-high resolution laser-based angle-resolved photoemission (ARPES) measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 (Bi2212) high temperature superconductor. Momentum dependent measurements provide new insights on the nature of high energy kink at 200~400 meV and high energy dispersions. The strong dichotomy between the MDC- and EDC-derived bands is revealed which raises critical issues about its origin and which one represents intrinsic band structure. The MDC-derived high energy features are affected by the high-intensity valence band at higher binding energy and may not be intrinsic.
We study the temperature dependence of the resistivity as a function of magnetic field in superconducting transition (Tconset - TcR=0) region for different Bi2Sr2CaCu2O8+{delta} superconducting samples being synthesized using sol-gel method. The superconducting transition temperature (TcR=0) of the studied samples is increased from 32 K to 82K by simply increasing the final sintering temperature with an improved grains morphology. On the other hand, broadening of transition is increased substantially with decrease in sintering temperature; this is because Tconset is not affected much with grains morphology. Further broadening of the superconducting transition is seen under magnetic field, which is being explained on the basis of thermally activated flux flow (TAFF) below superconducting transition temperature (Tc). TAFF activation energy (U0) is calculated using the resistive broadening of samples in the presence of magnetic field. Temperature dependence of TAFF activation energy revealed linear temperature dependence for all the samples. Further, magnetic field dependence is found to obey power law for all the samples and the negative exponent is increased with increase in sintering temperature or the improved grains morphology for different Bi-2212 samples. We believe that the sintering temperature and the ensuing role of grain morphology is yet a key issue to be addressed in case of cuprate superconductors.
Ultrahigh resolution angle-resolved photoemission spectroscopy with low-energy photons is used to study the detailed momentum dependence of the well-known nodal kink dispersion anomaly of Bi2Sr2CaCu2O8+{delta}. We find that the kinks location transitions smoothly from a maximum binding energy of about 65 meV at the node of the d-wave superconducting gap to 55 meV roughly one-third of the way to the antinode. Meanwhile, the self-energy spectrum corresponding to the kink dramatically sharpens and intensifies beyond a critical point in momentum space. We discuss the possible bosonic spectrum in energy and momentum space that can couple to the k-space dispersion of the electronic kinks.
Nicola Poccia
,Gaetano Campi
,Michela Fratini
.
(2011)
.
"Spatial inhomogeneity and chiral symmetry of the lattice incommensurate supermodulation in high temperature superconductor Bi2Sr2CaCu2O8+y"
.
Antonio Bianconi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا