We explore a method for laser cooling and optical detection of excitations in a LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electro-mechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an optical loud speaker are outlined.
Chip-scale atomic devices built around micro-fabricated alkali vapor cells are at the forefront of compact metrology and atomic sensors. We demonstrate a micro-fabricated vapor cell that is actively-pumped to ultra-high-vacuum (UHV) to achieve laser cooling. A grating magneto optical trap (GMOT) is incorporated with the 4 mm-thick Si/glass vacuum cell to demonstrate the feasibility of a fully-miniaturized laser cooling platform. A two-step optical excitation process in rubidium is used to overcome surface-scatter limitations to the GMOT imaging. The unambiguous miniaturization and form-customizability made available with micro-fabricated UHV cells provide a promising platform for future compact cold-atom sensors.
Efficient cooling of trapped charged particles is essential to many fundamental physics experiments, to high-precision metrology, and to quantum technology. Until now, sympathetic cooling has required close-range Coulomb interactions, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enables energy exchange over a distance of 9 cm. We also demonstrate the cooling of a resonant mode of a macroscopic LC circuit with laser-cooled ions and sympathetic cooling of an individually trapped proton, reaching temperatures far below the environmental temperature. Notably, as this technique uses only image-current interactions, it can be easily applied to an experiment with antiprotons, facilitating improved precision in matter-antimatter comparisons and dark matter searches.
Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
We derive the Hamiltonian of a superconducting circuit that comprises a single-Josephson-junction flux qubit and an LC oscillator. If we keep the qubits lowest two energy levels, the derived circuit Hamiltonian takes the form of the quantum Rabi Hamiltonian, which describes a two-level system coupled to a harmonic oscillator, regardless of the coupling strength. To investigate contributions from the qubits higher energy levels, we numerically calculate the transition frequencies of the circuit Hamiltonian. We find that the qubits higher energy levels mainly cause an overall shift of the entire spectrum, but the energy level structure up to the seventh excited states can still be fitted well by the quantum Rabi Hamiltonian even in the case where the coupling strength is larger than the frequencies of the qubit and the oscillator, i.e., when the qubit-oscillator circuit is in the deep-strong-coupling regime. We also confirm that some of the paradoxical properties of the quantum Rabi Hamiltonian in the deep-strong-coupling regime, e.g. the non-negligible number of photons and the nonzero expectation value of the flux in the oscillator in the ground state, arise from the circuit Hamiltonian as well.
Current experimental efforts to test the fundamental CPT symmetry with single (anti-)protons are progressing at a rapid pace but are hurt by the nonzero temperature of particles and the difficulty of spin state detection. We describe a laser-based and quantum logic inspired approach to single (anti-)proton cooling and state detection.