Do you want to publish a course? Click here

Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime

151   0   0.0 ( 0 )
 Added by Anil Zenginoglu C
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the hyperboloidal compactification for Teukolsky equations in Kerr spacetime. We include null infinity on the numerical grid by attaching a hyperboloidal layer to a compact domain surrounding the rotating black hole and the orbit of an inspiralling point particle. This technique allows us to study, for the first time, gravitational waveforms from large- and extreme-mass-ratio inspirals in Kerr spacetime extracted at null infinity. Tests and comparisons of our results with previous calculations establish the accuracy and efficiency of the hyperboloidal layer method.



rate research

Read More

We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesics. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesics, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.
An extreme mass ratio inspiral takes place when a compact stellar object is inspiraling into a supermassive black hole due to gravitational radiation reaction. Gravitational waves (GWs) from this system can be calculated using the Teukolsky equation (TE). In our case, we compute the asymptotic GW fluxes of a spinning body orbiting a Kerr black hole by solving numerically the TE both in time and frequency domain. Our ultimate goal is to produce GW templates for space-based detectors such as LISA.
We compute adiabatic waveforms for extreme mass-ratio inspirals (EMRIs) by stitching together a long inspiral waveform from a sequence of waveform snapshots, each of which corresponds to a particular geodesic orbit. We show that the complicated total waveform can be regarded as a sum of voices. Each voice evolves in a simple way on long timescales, a property which can be exploited to efficiently produce waveform models that faithfully encode the properties of EMRI systems. We look at examples for a range of different orbital geometries: spherical orbits, equatorial eccentric orbits, and one example of generic (inclined and eccentric) orbits. To our knowledge, this is the first calculation of a generic EMRI waveform that uses strong-field radiation reaction. We examine waveforms in both the time and frequency domains. Although EMRIs evolve slowly enough that the stationary phase approximation (SPA) to the Fourier transform is valid, the SPA calculation must be done to higher order for some voices, since their instantaneous frequency can change from chirping forward ($dot f > 0$) to chirping backward ($dot f < 0$). The approach we develop can eventually be extended to more complete EMRI waveform models, for example to include effects neglected by the adiabatic approximation such as the conservative self force and spin-curvature coupling.
Inspirals of stellar mass compact objects into massive black holes are an important source for future gravitational wave detectors such as Advanced LIGO and LISA. Detection of these sources and extracting information from the signal relies on accurate theoretical models of the binary dynamics. We cast the equations describing binary inspiral in the extreme mass ratio limit in terms of action angle variables, and derive properties of general solutions using a two-timescale expansion. This provides a rigorous derivation of the prescription for computing the leading order orbital motion. As shown by Mino, this leading order or adiabatic motion requires only knowledge of the orbit-averaged, dissipative piece of the self force. The two timescale method also gives a framework for calculating the post-adiabatic corrections. For circular and for equatorial orbits, the leading order corrections are suppressed by one power of the mass ratio, and give rise to phase errors of order unity over a complete inspiral through the relativistic regime. These post-1-adiabatic corrections are generated by the fluctuating piece of the dissipative, first order self force, by the conservative piece of the first order self force, and by the orbit-averaged, dissipative piece of the second order self force. We also sketch a two-timescale expansion of the Einstein equation, and deduce an analytic formula for the leading order, adiabatic gravitational waveforms generated by an inspiral.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا