We present a comprehensive infrared spectroscopic study of lattice dynamics in the pnictide parent compound BaFe$_2$As$_2$. In the tetragonal structural phase, we observe the two degenerate symmetry-allowed in-plane infrared active phonon modes. Following the structural transition from the tetragonal to orthorhombic phase, we observe splitting into four non-degenerate phonon modes and a significant phonon strength enhancement. These detailed data allow us to provide a physical explanation for the anomalous phonon strength enhancement as the result of anisotropic conductivity due to Hunds coupling.
We investigate coherent phonon oscillations of BaFe$_2$As$_2$ using optical pump-probe spectroscopy. Time-resolved optical reflectivity shows periodic modulations due to $A_{1g}$ coherent phonon of $c$-axis arsenic vibrations. Optical probe beams polarized along the orthorhombic $a$- and $b$-axes reveal that the initial phase of coherent oscillations shows a systematic deviation as a function of temperature, although these oscillations arise from the same $c$-axis arsenic vibrations. The oscillation-phase remains anisotropic even in the tetragonal structure, reflecting a nematic response of BaFe$_2$As$_2$. Our study suggests that investigation on the phase of coherent phonon oscillations in optical reflectivity can offer unique evidence of a nematic order strongly coupled to a lattice instability.
The magnetic properties in the parent compounds are often intimately related to the microscopic mechanism of superconductivity. Here we report the first direct measurements on the electronic structure of a parent compound of the newly discovered iron-based superconductor, BaFe$_2$As$_2$, which provides a foundation for further studies. We show that the energy of the spin density wave (SDW) in BaFe$_2$As$_2$ is lowered through exotic exchange splitting of the band structure, rather than Fermi surface nesting of itinerant electrons. This clearly demonstrates that a metallic SDW state could be solely induced by interactions of local magnetic moments, resembling the nature of antiferromagnetic order in cuprate parent compounds.
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature $T_c^{on}$ reaches a maximum of 20.5 K at $x$ = 0.096, and it drops to below 4 K as $x$ $geq$ 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.
Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ along the orthorhombic a axis, the resonance disperses upwards away from Q$_{AFM}$ along the b axis. In contrast to the downward dispersing resonance and hour-glass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe$_2$As$_2$ compounds possesses a magnon-like upwards dispersion.
We have performed an angle-resolved photoemission spectroscopy study of BaCr$_2$As$_2$, which has the same crystal structure as BaFe$_2$As$_2$, a parent compound of Fe-based superconductors. We determine the Fermi surface of this material and its band dispersion over 5 eV of binding energy. Very moderate band renormalization (1.35) is observed for only two bands. We attribute this small renormalization to enhanced direct exchange as compared to Fe in BaFe$_2$As$_2$, and to a larger contribution of the $e_g$ orbitals in the composition of the bands forming the Fermi surface, leading to an effective valence count that is reduced by Fe $d$ - As $p$ hybridization.
A. A. Schafgans
,B. C. Pursley
,A. D. LaForge
.
(2011)
.
"Phonon splitting and anomalous enhancement of infrared-active modes in BaFe$_2$As$_2$"
.
Alexander Schafgans
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا