Do you want to publish a course? Click here

On the mass-to-light ratios of fossil groups. Are they simply dark clusters?

260   0   0.0 ( 0 )
 Added by Robert Neil Proctor
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Defined as X-ray bright galaxy groups with large differences between the luminosities of their brightest and second brightest galaxies, fossil groups are believed to be some of the oldest galaxy systems in the universe. They have therefore been the subject of much recent research. In this work we present a study of 10 fossil group candidates with an average of 33 spectroscopically confirmed members per group, making this the deepest study of its type to-date. We also use this data to perform an analysis of the luminosity function of our sample of fossil groups. We confirm the high masses previously reported for many of fossil systems, finding values more similar to those of clusters than of groups. We also confirm the high dynamical mass-to-light ratios reported in many previous studies. While our results are consistent with previous studies in many ways, our interpretation is not. This is because we show that, while the luminosities of the BCGs in these systems are consistent with their high dynamical masses, their richnesses (total number of galaxies above some canonical value) are extremely low. This leads us to suggest a new interpretation of fossil systems in which the large differences between the luminosities of their brightest and second brightest galaxies are simply the result the high BCG luminosities and low richnesses, while the high masses and low richnesses also explain the high mass-to-light ratios. Our results therefore suggest that fossil systems can be characterised as cluster-like in their masses and BCG luminosities, but possessing the richnesses and optical luminosities of relatively poor groups. These findings are not predicted by any of the current models for the formation of fossil groups. Therefore, if this picture is confirmed, current ideas about the formation and evolution of fossil systems will need to be reformulated.



rate research

Read More

Galaxy pairs may represent a way station in the evolutionary path from poor groups to giant isolated ellipticals (or fossil groups). To test this evolutionary scenario, we investigated the environment of 4 galaxy pairs composed of a giant elliptical galaxy and its spiral companion. The pairs are very similar from the optical and dynamical point of view, but have very different X-ray properties. The faint galaxy population around the pairs was observed with VIMOS on the VLT. These observations show that the presence of extended diffuse X-ray emission from an IGM is not necessarily connected to the presence of a numerous faint galaxy population. The study of luminosity functions (LFs) indicate that our X-ray luminous pairs are more dynamically evolved than a sample of poor groups with comparable X-ray luminosities from the literature. However, our X-ray faint pairs resemble the LF of those X-ray bright groups and may represent a phase in the dynamical evolution of these groups, where the recent or ongoing interaction, in which the pair E is involved, has destroyed or at least decreased the luminosity of the IGM. The X-ray faint groups LF is also consitent with their evolution into a fossil group.
136 - Anna Gallazzi 2009
Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light (M/L) ratios from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M/L values using either absorption-line data or broad band colors. The accuracy of M/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M/L accuracy clearly depends on the spectral S/N ratio, there is no significant gain in improving the S/N much above 50/pix and limiting uncertainties of 0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high Hdelta at fixed D4000), the M/L of which cannot be constrained any better than 0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.
Recent advances in N-body simulations of dark matter halos have shown that three-parameter models, in particular the Einasto profile characterized by d ln {rho}(r)/d ln r / r with a shape parameter {alpha} < 0.3, are able to produce better fits to the 3D spatial density profiles than two-parameter models like the Navarro, Frenk and White (NFW), and Moore et al. profiles. In this paper, we present for the first time an analytically motivated form for the 2D surface mass density of the Einasto family of dark matter haloes, in terms of the 3D spatial density parameters for a wide range of the shape parameter 0.1 < {alpha} < 1. Our model describes a projected (2D) Einasto profile remarkably well between 0 and (3 - 5) r_{200}, with errors less than 0.3 per cent for {alpha} < 0.3 and less than 2 per cent for {alpha} as large as 1. This model (in 2D) can thus be used to fit strong and weak lensing observations of galaxies and clusters whose total spatial (3D) density distributions are believed to be Einasto-like. Further, given the dependence of our model on the 3D parameters, one can reliably estimate structural parameters of the spatial (3D) density from 2D observations. We also consider a Sersic-like parametrization for the above family of projected Einasto profiles and observe that fits with a Sersic profile are sensitive to whether one fits the projected density in linear scale or logarithmic scale and yield widely varying results. Structural parameters of Einasto-like systems, inferred from fits with a Sersic profile, should be used with caution.
We present a new sample of 25 fossil groups (FGs) at z < 0.1, along with a control sample of seventeen bright ellipticals located in non-fossil systems. Both the global properties of FGs (e.g. X-ray luminosity) as well as the photometric properties (i.e. isophotal shape parameter, a4) and spectroscopic parameters (e.g. the alpha-enhancement) of their first-ranked ellipticals are consistent with those of the control sample. This result favors a scenario where FGs are not a distinct class of systems, but rather a common phase in the life of galaxy groups. We also find no evidence for an evolutionary sequence explaining the formation of galaxies in fossil systems through the merging of galaxies in compact groups.
Dynamical studies of local ETGs and the Fundamental Plane point to a strong dependence of M/L ratio on luminosity (and stellar mass) with a relation of the form $M/L propto L^{gamma}$. The tilt $gamma$ may be caused by various factors, including stellar population properties, IMF, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform dataset of local ETGs from Prugniel & Simien (1997). We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M/L contributes little to the tilt. We estimate the total M/L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than $M_B sim -20.5$, and increasing with luminosity for the brighter galaxies; we detect no significant differences among S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light, to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamics studies at larger radii.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا