Do you want to publish a course? Click here

Gravitational waves from compact binaries

146   0   0.0 ( 0 )
 Added by Marc van der Sluys
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this review, I give a summary of the history of our understanding of gravitational waves and how compact binaries were used to transform their status from mathematical artefact to physical reality. I also describe the types of compact (stellar) binaries that LISA will observe as soon as it is switched on. Finally, the status and near future of LIGO, Virgo and GEO are discussed, as well as the expected detection rates for the Advanced detectors, and the accuracies with which binary parameters can be determined when BH/NS inspirals are detected.



rate research

Read More

We discuss gravitational waves from merging binaries using a Newtonian approach with some inputs from the Post-Newtonian formalism. We show that it is possible to understand the key features of the signal using fundamental physics and also demonstrate that an approximate calculation gives us the correct order of magnitude estimate of the parameters describing the merging binary system. We build on this analysis to understand the range for different types of sources for given detector sensitivity. We also consider known binary pulsar systems and discuss the expected gravitational wave signal from these.
112 - Bin Liu , Dong Lai 2021
Merging compact black-hole (BH) binaries are likely to exist in the nuclear star clusters around supermassive BHs (SMBHs), such as Sgr A$^ast$. They may also form in the accretion disks of active galactic nuclei. Such compact binaries can emit gravitational waves (GWs) in the low-frequency band (0.001-1 Hz) that are detectable by several planned space-borne GW observatories. We show that the orbital axis of the compact binary may experience significant variation due to the frame-dragging effect associated with the spin of the SMBH. The dynamical behavior of the orbital axis can be understood analytically as a resonance phenomenon. We show that rate of change of the binary orbital axis encodes the information on the spin of the SMBH. Therefore detecting GWs from compact binaries around SMBHs, particularly the modulation of the waveform associated with the variation of the binary orbital axis, can provide a new probe on the spins of SMBHs.
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in a hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency is typically in the range 3-5 kHz as determined by the central density of the star. In the best cases, LIGO may be sensitive to CDO masses greater than or of order $10^{-8}$ solar masses.
Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا