We consider the localization properties of a lattice of coupled masses and springs with random mass and spring constant values. We establish the full phase diagrams of the system for pure mass and pure spring disorder. The phase diagrams exhibit regions of stable as well as unstable wave modes. The latter are of interest for the instantaneous-normal-mode spectra of liquids and the nascent field of acoustic metamaterials. We show the existence of delocalization-localization transitions throughout the phase diagram and establish, by high-precision numerical studies, that the universality of these transitions is of the Anderson type.