Precision Spectroscopy of Deeply Bound Pionic Atoms and Partial Restoration of Chiral Symmetry in Medium


Abstract in English

We study theoretically the formation spectra of deeply bound pionic atoms expected to be observed by experiments with high energy resolution at RIBF/RIKEN, and we discuss in detail the possibilities to extract new information on the pion properties at finite density from the observed spectra, which may provide information on partial restoration of chiral symmetry in medium. We find that the non-yrast pionic states such as 2s are expected to be seen in the (d,3He) spectra, which will be helpful to reduce uncertainties of the theoretical calculations in the neutron wave functions in nucleus. The observation of the 2s state with the ground 1s state is also helpful to reduce the experimental uncertainties associated in the calibration of the absolute excitation energy. We find that the nuclear densities probed by atomic pions are quite stable and almost constant for various atomic states and various nuclei. Effects of the pion wave function renormalization to the formation spectra are also evaluated.

Download