No Arabic abstract
In this thesis we consider several aspects of general relativity relating to exact solutions of the Einstein equations. In the first part gravitational plane waves in the Rosen form are investigated, and we develop a formalism for writing down any arbitrary polarisation in this form. In addition to this we have extended this algorithm to an arbitrary number of dimensions, and have written down an explicit solution for a circularly polarized Rosen wave. In the second part a particular, ultra-local limit along an arbitrary timelike geodesic in any spacetime is constructed, in close analogy with the well-known lightlike Penrose limit. This limit results in a Bianchi type I spacetime. The properties of these spacetimes are examined in the context of this limit, including the Einstein equations, stress-energy conservation and Raychaudhuri equation. Furthermore the conditions for the Bianchi type I spacetime to be diagonal are explicitly set forward, and the effect of the limit on the matter content of a spacetime are examined.
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.
The recent direct observation of gravitational waves (GW) from merging black holes opens up the possibility of exploring the theory of gravity in the strong regime at an unprecedented level. It is therefore interesting to explore which extensions to General Relativity (GR) could be detected. We construct an Effective Field Theory (EFT) satisfying the following requirements. It is testable with GW observations; it is consistent with other experiments, including short distance tests of GR; it agrees with widely accepted principles of physics, such as locality, causality and unitarity; and it does not involve new light degrees of freedom. The most general theory satisfying these requirements corresponds to adding to the GR Lagrangian operators constructed out of powers of the Riemann tensor, suppressed by a scale comparable to the curvature of the observed merging binaries. The presence of these operators modifies the gravitational potential between the compact objects, as well as their effective mass and current quadrupoles, ultimately correcting the waveform of the emitted GW.
A systematic study of deformations of four-dimensional Einsteinian space-times embedded in a pseudo-Euclidean space $E^N$ of higher dimension is presented. Infinitesimal deformations, seen as vector fields in $E^N$, can be divided in two parts, tangent to the embedded hypersurface and orthogonal to it; only the second ones are relevant, the tangent ones being equivalent to coordinate transformations in the embedded manifold. The geometrical quantities can be then expressed in terms of embedding functions $z^A$ and their infinitesimal deformations $v^A z^A to {tilde{z}}^A = z^A + epsilon v^A$. The deformations are called Einsteinian if they keep Einstein equations satisfied up to a given order in $epsilon$. The system so obtained is then analyzed in particular in the case of the Schwarzschild metric taken as the starting point, and some solutions of the first-order deformation of Einsteins equations are found. We discuss also second and third order deformations leading to wave-like solutions and to the departure from spherical symmetry towards an axial one (the approximate Kerr solution)
We present the status and update of a new approach to quantum general relativity as formulated by Feynman from the Einstein-Hilbert action wherein amplitude-based resummation techniques are applied to the theorys loop corrections to yield results (superficially) free of ultraviolet(UV) divergences. Recent applications are summarized.
The second generation of gravitational-wave detectors is scheduled to start operations in 2015. Gravitational-wave signatures of compact binary coalescences could be used to accurately test the strong-field dynamical predictions of general relativity. Computationally expensive data analysis pipelines, including TIGER, have been developed to carry out such tests. As a means to cheaply assess whether a particular deviation from general relativity can be detected, Cornish et al. and Vallisneri recently proposed an approximate scheme to compute the Bayes factor between a general-relativity gravitational-wave model and a model representing a class of alternative theories of gravity parametrised by one additional parameter. This approximate scheme is based on only two easy-to-compute quantities: the signal-to-noise ratio of the signal and the fitting factor between the signal and the manifold of possible waveforms within general relativity. In this work, we compare the prediction from the approximate formula against an exact numerical calculation of the Bayes factor using the lalinference library. We find that, using frequency-domain waveforms, the approximate scheme predicts exact results with good accuracy, providing the correct scaling with the signal-to-noise ratio at a fitting factor value of 0.992 and the correct scaling with the fitting factor at a signal-to-noise ratio of 20, down to a fitting factor of $sim$ 0.9. We extend the framework for the approximate calculation of the Bayes factor which significantly increases its range of validity, at least to fitting factors of $sim$ 0.7 or higher.