Scalable and Secure Aggregation in Distributed Networks


Abstract in English

We consider the problem of computing an aggregation function in a emph{secure} and emph{scalable} way. Whereas previous distributed solutions with similar security guarantees have a communication cost of $O(n^3)$, we present a distributed protocol that requires only a communication complexity of $O(nlog^3 n)$, which we prove is near-optimal. Our protocol ensures perfect security against a computationally-bounded adversary, tolerates $(1/2-epsilon)n$ malicious nodes for any constant $1/2 > epsilon > 0$ (not depending on $n$), and outputs the exact value of the aggregated function with high probability.

Download