We show that a nonlinear asymmetric directional coupler composed of a linear waveguide and a nonlinear waveguide operating by nondegenerate parametric amplification is an effective source of single-mode squeezed light. This is has been demonstrated, under certain conditions and for specific modes, for incident coherent beams in terms of the quasiprobability functions, photon-number distribution and phase distribution.
Squeezed vacuum (SV) can be obtained by an optical parametric amplifier (OPA) with the quantum vacuum state at the input. We are interested in a degenerate type-I OPA based on parametric down-conversion (PDC) where due to phase matching requirements, an extraordinary polarized pump must impinge onto a birefringent crystal with a large chi(2) nonlinearity. As a consequence of the optical anisotropy of the medium, the direction of propagation of the pump wavevector does not coincide with the direction of propagation of its energy, an effect known as transverse walk-off. For certain pump sizes and crystal lengths, the transverse walk-off has a strong influence on the spatial spectrum of the generated radiation, which in turn affects the outcome of any experiment in which this radiation is employed. In this work we propose a method that reduces the distortions of the two-photon amplitude (TPA) of the states considered, by using at least two consecutive crystals instead of one. We show that after anisotropy compensation the TPA becomes symmetric, allowing for a simple Schmidt expansion, a procedure that in practice requires states that come from experimental systems free of anisotropy effects.
Silicon nitride based photonic integrated circuits offer a wavelength operation window in the near infrared down to visible light, which makes them attractive for life science applications. However, they exhibit significantly different behavior in comparison with better-established silicon on insulator counterparts due to the lower index contrast. Among the most important building blocks in photonic integrated circuits are broadband couplers with a defined coupling ratio. We present silicon nitride broadband asymmetric directional coupler designs with 50/50 and 90/10 splitting ratios with a central wavelength of 840 nm for both TE- and TM-like polarization. We show that silicon nitride broadband asymmetric directional couplers can be designed accurately in a time efficient way by using a general implementation of the coupled mode theory. The accuracy of the coupled mode theory approach is validated with finite difference time domain simulations and confirmed with measurements of four coupler configurations.
The standard process for the production of strongly squeezed states of light is optical parametric amplification (OPA) below threshold in dielectric media such as LiNbO3 or periodically poled KTP. Here, we present a graphical description of squeezed light generation via OPA. It visualizes the interaction between the nonlinear dielectric polarization of the medium and the electromagnetic quantum field. We explicitly focus on the transfer from the fields ground state to a squeezed vacuum state and from a coherent state to a bright squeezed state by the mediums secondorder nonlinearity, respectively. Our pictures visualize the phase dependent amplification and deamplification of quantum uncertainties and give the phase relations between all propagating electro-magnetic fields as well as the internally induced dielectric polarizations. The graphical description can also be used to describe the generation of nonclassical states of light via higherorder effects of the non-linear dielectric polarization such as four-wave mixing and the optical Kerr effect.
We study an optomechanical system for the purpose of generating a nonclassical mechanical state when a mechanical oscillator is quadratically coupled to a single-mode cavity field driven by a squeezed optical field. The system corresponds to a regime where the optical dissipation dominates both the mechanical damping and the optomechanical coupling. We identify that multi-phonon processes emerge in the optomechanical system and show that a mechanical oscillator prepared in the ground state will evolve into an amplitude-squared squeezed vacuum state. The Wigner distribution of the steady state of the mechanical oscillator is non-Gaussian exhibiting quantum interference and four-fold symmetry. This nonclassical mechanical state, generated via reservoir engineering, can be used for quantum correlation measurements of the position and momentum of the mechanics below the standard quantum limit.
We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86 % (95 %) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.
Faisal A. A. El-Orany
,J. Perina
,M. Sebawe Abdalla
.
(2011)
.
"Generation of squeezed light in a nonlinear asymmetric directional coupler"
.
Faisal El-Orany Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا